Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
π(2R)2 = 4πR2
π(3R)2 = 9 πR2
π(kR)2 = k2 πR2
Vậy nếu ta gấp đôi bán kính thì diện tích hình tròn sẽ gấp bốn, nếu nhân bán kính với k > 0 thì diện tích hình tròn sẽ gấp k2 lần
Ta có:
π(2R)2 = 4πR2
π(3R)2 = 9 πR2
π(kR)2 = k2 πR2
Vậy nếu ta gấp đôi bán kính thì diện tích hình tròn sẽ gấp bốn, nếu nhân bán kính với k > 0 thì diện tích hình tròn sẽ gấp k2 lần.
Vậy:
Khi bán kính tăng lên gấp đôi thì diện tích đường tròn tăng lên gấp 4 (= 22) lần.
Khi bán kính tăng lên gấp ba thì diện tích đường tròn tăng lên gấp 9 (= 32) lần.
Khi bán kính tăng lên gấp k thì diện tích đường tròn tăng lên gấp k2lần.
Kiến thức áp dụng
+ Diện tích hình tròn bán kính R là: S = πR2.
Câu 6:
\(V_1=\dfrac{1}{3}\cdot pi\cdot R^2\cdot h\)
\(V_2=\dfrac{1}{3}\cdot pi\cdot\left(2\cdot R\right)^2\cdot2h=\dfrac{4}{3}\cdot pi\cdot R^2\cdot h\)
=>Thể tích tăng thêm 4 lần
Gọi bán kính mới là R’. Ta có R’ = 3R.
Diện tích mới là :
S' = πR'2 = π(3R)2 = π9R2 = 9πR2 = 9S
Vậy khi bán kính tăng lên 3 lần thì diện tích tăng 9 lần.
Khi bán kính tăng gấp k lần (k>1) tức là
Vậy:
Khi bán kính tăng lên gấp đôi thì diện tích đường tròn tăng lên gấp 4 (= 22) lần.
Khi bán kính tăng lên gấp ba thì diện tích đường tròn tăng lên gấp 9 (= 32) lần.
Khi bán kính tăng lên gấp k thì diện tích đường tròn tăng lên gấp k2lần.
Thể tích hình trụ : V 1 = πr 2 h = πr 2 .3r = 3 πr 3 (đvdt)
Thể tích hình cầu : V 2 = (4/3). πr 3 (đvdt)
Vậy chọn đáp án B