K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1

Ta có: \(AB\perp CD\Rightarrow\) H là trung điểm CD (t/c bán kính vuông góc dây cung)

\(\Rightarrow\Delta ACD\) cân tại A (AH đồng thời là trung tuyến và đường cao)

\(\Rightarrow\widehat{ACD}=\widehat{ADC}\)

Mà \(\widehat{ADC}=\widehat{MCA}\) (cùng chắn AC)

\(\Rightarrow\widehat{ACD}=\widehat{MCA}\Rightarrow CA\) là phân giác của \(\widehat{MCD}\)

Áp dụng định lý phân giác trong tam giác MCH:

\(\dfrac{AM}{AH}=\dfrac{CM}{CH}\) (1)

Lại có \(\widehat{ACB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ACB}=90^0\)

\(\Rightarrow CB\perp CA\)

\(\Rightarrow CB\) là đường phân giác ngoài góc \(\widehat{MCD}\) của tam giác MCH

Áp dụng định lý phân giác: \(\dfrac{BM}{BH}=\dfrac{CM}{CH}\) (2)

(1);(2) \(\Rightarrow\dfrac{AM}{AH}=\dfrac{BM}{BH}\Rightarrow BM.AH=BH.AM\)

NV
13 tháng 1

loading...

29 tháng 8 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có: ∠(CFE) = 90 0  (F thuộc đường tròn đường kính CE)

Lại có CF là đường cao nên MC 2  = MF.ME

Tương tự, ta có:  MC 2  = MH.MO

⇒ ME.MF = MH.MO

Đề kiểm tra Toán 9 | Đề thi Toán 9

Xét ΔMOF và ΔMEN có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

∠(FMO) chung

⇒ ΔMOF ∼ ΔMEN (c.g.c)

⇒ ∠(MOF) = ∠(MEH)

20 tháng 4 2016

 bạn gì đó giúp mình giải bài toán này vs

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

Xét tứ giác EHAC có 

\(\widehat{EHA}\) và \(\widehat{ECA}\) là hai góc đối

\(\widehat{EHA}+\widehat{ECA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: EHAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{HEC}+\widehat{HAC}=180^0\)(hai góc đối)

mà \(\widehat{HAC}+\widehat{BAC}=180^0\)(Hai góc kề bù)

nên \(\widehat{HEC}=\widehat{CAB}\)(Đpcm)

18 tháng 5 2021

Em cần câu b

 

30 tháng 12 2023

Điểm C ở đâu vậy bạn?

30 tháng 11 2021

a: Xét ΔOAK vuông tại K và ΔOBK vuông tại K có

OA=OB

OK chung

Do đó: ΔOAK=ΔOBK

Suy ra: \(\widehat{AOK}=\widehat{BOK}\)

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
30 tháng 12 2021

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C