Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=1-\frac{3x^2}{\left(x^3\right)^2}=1-\frac{3}{x^4}\)
\(\int\frac{2^{x-1}}{e^x}dx=\frac{1}{2}\int\left(\frac{2}{e}\right)^xdx=\frac{1}{2}.\frac{\left(\frac{2}{e}\right)^x}{ln\left(\frac{2}{e}\right)}+C=\frac{2^x}{2e^x\left(ln2-1\right)}+C\)
Bài 1:
\(F'\left(x\right)=e^x+\left(x-1\right)e^x=xe^x=\frac{x}{e^x}.e^{2x}\Rightarrow f\left(x\right)=\frac{x}{e^x}\)
Xét \(I=\int f'\left(x\right)e^{2x}dx\)
Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\v=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)
\(\Rightarrow I=f\left(x\right).e^{2x}+2\int f\left(x\right).e^{2x}dx=x.e^x+2\left(x-1\right)e^x+C=\left(3x-2\right)e^x+C\)
2.
Xét \(J=\int\limits^1_0xf\left(6x\right)dx\)
Đặt \(6x=t\Rightarrow dx=\frac{1}{6}dt\Rightarrow J=\frac{1}{36}\int\limits^6_0t.f\left(t\right)dt=\frac{1}{36}\int\limits^6_0x.f\left(x\right)dx=1\)
\(\Rightarrow I=\int\limits^6_0x.f\left(x\right)dx=36\)
Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\frac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{2}x^2f\left(x\right)|^6_0-\frac{1}{2}\int\limits^6_0x^2.f'\left(x\right)dx\)
\(\Leftrightarrow36=18-\frac{1}{2}\int\limits^6_0x^2f'\left(x\right)dx\)
\(\Rightarrow\int\limits^6_0x^2f'\left(x\right)dx=-36\)
\(f'\left(x\right)=0\) có 2 nghiệm bội lẻ \(x=0\) ; \(x=3\)
Mặt khác do hệ số của x trong \(3-x\) trái dấu hệ số của x nên nghiệm lớn hơn là điểm cực đại, nghiệm nhỏ hơn là điểm cực tiểu hay \(x=0\) là điểm cực tiểu
=\(\sqrt{4x^2-3x-1}'=\left(\left(4x^2-3x-1\right)^{\frac{1}{2}}\right)'=\frac{1}{2}\left(4x^2-3x-1\right)'\left(4x^2-3x-1\right)^{\frac{1}{2}-1}=\frac{1}{2}\left(8x-3\right)\frac{1}{\sqrt{4x^2-3x-1}}\)
Hàm \(x^x\) vừa là hàm mũ, vừa là hàm lũy thừa nên nó phải tuân theo điều kiện của cả 2 hàm này, tức là cơ số \(x>0\) chứ
đạo hàm theo ẩn nào vậy bn
x