K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

1) bạn dùng dấu U 

điều kiện \(\begin{cases}m\ne0,m>-\frac{1}{4}\\m< 1\end{cases}\)

muons dễ nhìn thì vẽ trục số:  0 -1/4 1 x

=> điều kiện x \(\in\left(-\frac{1}{4};1\right)\backslash\left\{0\right\}\)

30 tháng 5 2023

loading...

loading...

30 tháng 5 2023

loading...  

21 tháng 9 2019

NV
21 tháng 4 2019

\(\left(x+2\right)f\left(x\right)+\left(x+1\right)f'\left(x\right)=e^x\)

\(\Leftrightarrow e^x\left(x+2\right)f\left(x\right)+e^x\left(x+1\right)f'\left(x\right)=e^{2x}\)

\(\Leftrightarrow\left[e^x\left(x+1\right).f\left(x\right)\right]'=e^{2x}\)

Lấy nguyên hàm 2 vế:

\(\Leftrightarrow e^x\left(x+1\right).f\left(x\right)=\int e^{2x}dx=\frac{1}{2}e^{2x}+C\)

Do \(f\left(0\right)=\frac{1}{2}\Rightarrow e^0\left(0+1\right).f\left(0\right)=\frac{1}{2}e^0+C\Rightarrow C=0\)

\(\Rightarrow e^x\left(x+1\right)f\left(x\right)=\frac{1}{2}e^{2x}\Rightarrow f\left(x\right)=\frac{e^{2x}}{2e^x\left(x+1\right)}=\frac{e^x}{2\left(x+1\right)}\)

\(\Rightarrow f\left(2\right)=\frac{e^2}{6}\)

29 tháng 7 2018

Chọn C.

Do f ' x > 0 ,   ∀ x ∈ 4 ; 7

⇒ f x đồng biến trên khoảng  4 ; 7 .

⇒ f 6 > f 5

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

AH
Akai Haruma
Giáo viên
17 tháng 1 2018

Lời giải:

\(\int ^{1}_{0}x^2dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}; \int ^{1}_{0}x^3dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^4}{4}=\frac{1}{4}\)

\(\frac{1}{3}>\frac{1}{4}\Rightarrow A\) đúng.

Câu B. Xét về mặt điều kiện thì với \(x>0\Rightarrow \frac{1}{x+1}\) luôn có nghĩa, lúc này hàm số mới có tích phân được.

Xét theo định nghĩa nguyên hàm thì luôn đúng vì \(F(x)=\int f(x)dx\Leftrightarrow f(x)=F'(x)\)

Câu D.

\(\int ^b_af(x)dx+\int ^c_bf(x)dx=F(b)-F(a)+F(c)-F(b)\)

\(=F(c)-F(a)=\int ^c_af(x)dx\)

Do đó D đúng.

Do đó câu C sai.

Nếu \(\int ^a_{-a}f(x)dx=2\int ^{a}_0f(x)dx\)

\(\Leftrightarrow F(a)-F(-a)=2F(a)-2F(0)\)

\(\Leftrightarrow F(a)+F(-a)=2F(0)\)

Giả sử cho \(F(x)=x^2\), \(a\neq 0\)thì điều trên hiển nhiên vô lý

Do đó C sai.