K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2019

\(\left(x+2\right)f\left(x\right)+\left(x+1\right)f'\left(x\right)=e^x\)

\(\Leftrightarrow e^x\left(x+2\right)f\left(x\right)+e^x\left(x+1\right)f'\left(x\right)=e^{2x}\)

\(\Leftrightarrow\left[e^x\left(x+1\right).f\left(x\right)\right]'=e^{2x}\)

Lấy nguyên hàm 2 vế:

\(\Leftrightarrow e^x\left(x+1\right).f\left(x\right)=\int e^{2x}dx=\frac{1}{2}e^{2x}+C\)

Do \(f\left(0\right)=\frac{1}{2}\Rightarrow e^0\left(0+1\right).f\left(0\right)=\frac{1}{2}e^0+C\Rightarrow C=0\)

\(\Rightarrow e^x\left(x+1\right)f\left(x\right)=\frac{1}{2}e^{2x}\Rightarrow f\left(x\right)=\frac{e^{2x}}{2e^x\left(x+1\right)}=\frac{e^x}{2\left(x+1\right)}\)

\(\Rightarrow f\left(2\right)=\frac{e^2}{6}\)

NV
7 tháng 11 2021

Dạng: \(....f'\left(x\right)+...f\left(x\right)=...\)

Ý tưởng luôn là đưa về đạo hàm của tổng sau đó lấy nguyên hàm 2 vế.

Thêm bớt sao cho vế trái biến thành: \(u\left(x\right).f'\left(x\right)+u'\left(x\right).f\left(x\right)\) là được

So sánh nó với vế trái đề bài, dư ra \(u'\left(x\right)\) ở trước \(f\left(x\right)\) nên ta chia nó (vế kia vẫn ko quan tâm)

Được: \(\dfrac{u\left(x\right)}{u'\left(x\right)}.f'\left(x\right)+f\left(x\right)\)

So sánh nó với đề bài, vậy ta cần tìm hàm \(u\left(x\right)\) sao cho:

\(\dfrac{u\left(x\right)}{u'\left(x\right)}=x\left(x+1\right)\)

Nhưng để thế này ko lấy nguyên hàm được, phải nghịch đảo 2 vế:

\(\dfrac{u'\left(x\right)}{u\left(x\right)}=\dfrac{1}{x\left(x+1\right)}\)

Giờ thì lấy nguyên hàm: \(\int\dfrac{u'\left(x\right)}{u\left(x\right)}dx=\int\dfrac{dx}{x\left(x+1\right)}\Leftrightarrow ln\left|u\left(x\right)\right|=ln\left|\dfrac{x}{x+1}\right|+C\)

Tới đây suy được \(u\left(x\right)=\dfrac{x}{x+1}\) \(\Rightarrow\) vế trái cần có dạng: 

\(\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)\)

Nhìn vào đây là xong rồi. Bài toán sẽ được giải như sau:

Chia 2 vế giả thiết cho \(\left(x+1\right)^2\):

\(\Rightarrow\dfrac{x}{x+1}f'\left(x\right)+\dfrac{1}{\left(x+1\right)^2}f\left(x\right)=\dfrac{x}{x+1}\)

\(\Leftrightarrow\left(\dfrac{x}{x+1}+f\left(x\right)\right)'=\dfrac{x}{x+1}\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow\dfrac{x}{x+1}+f\left(x\right)=\int\dfrac{x}{x+1}dx=\int\left(1-\dfrac{1}{x+1}\right)dx=x-ln\left|x+1\right|+C\)

\(\Rightarrow f\left(x\right)=x-\dfrac{x}{x+1}-ln\left|x+1\right|+C=\dfrac{x^2}{x+1}-ln\left|x+1\right|+C\)

Thay \(x=1\)

\(\Rightarrow f\left(1\right)=\dfrac{1}{2}-ln2+C\Rightarrow-2ln2=\dfrac{1}{2}-ln2+C\)

\(\Rightarrow C=-ln2-\dfrac{1}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{x^2}{x+1}-ln\left|x+1\right|-ln2-\dfrac{1}{2}\)

\(\Rightarrow f\left(2\right)=...\)

14 tháng 11 2018

Chọn A

fXxjlwbZlzMv.png.

Nhân 2 vế của bnFd0EzcrH3t.png với Sa1d8HEiA3uM.png ta được AhQbU9ZfKp8l.png.

Hay QjawkYk6dAYZ.png.

Xét mrje45jPV41Z.png.

Đặt QFfevzfjSEAB.png.

cpaMcrFt0yym.png

Suy ra OY3JS5dsj87z.png.

 

Theo giả thiết OE4BLB3rYVup.png nên Pyg0gyR7C2os.png

sVNQfABwujlG.png.

4 tháng 8 2018

Đáp án D

11 tháng 11 2018

15 tháng 4 2022

undefined

15 tháng 4 2022

mình cảm ơn ạ♥♥♥

7 tháng 3 2018

Chọn D.

Xét  I = ∫ 0 1 f ' x d x   Đặt  t = x → t 2 = x → 2 t d t = d x

Đổi cận   x = 0 → t = 0 x = 1 → t = 1 . Khi đó  I = 2 ∫ 0 1 t f ' ( t ) d t = 2 A

Tính   A = ∫ 0 1 t f ' ( t ) d t . Đặt  u = t d v = f ' t d t → d u = d t v = f t

 

Khi đó 

1 tháng 10 2019

7 tháng 3 2017

Đáp án C.