Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{63^2-47^2}{215^2-105^2}=\) \(\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\frac{16.110}{110.320}=\frac{16}{320}\)\(=\frac{1}{20}\)
các câu kia làm tương tự nha
B1: a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)
=> \(\left|x-2\right|+\left(3y+2x\right)^2=0\)
Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left(3y+2x\right)^2\ge0\forall x;y\)
=> \(\left|x-2\right|+\left(3y+2x\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-2=0\\3y+2x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2x\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2.2=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{4}{3}\end{cases}}\)
Vậy ...
Bài 3:
a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)
\(\Leftrightarrow\left|x-2\right|+\left(3y+2x\right)^2=0\)
Dễ thấy \(VT\ge0\forall x;y\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\3y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{-4}{3}\end{matrix}\right.\)
Vậy...
b) \(3x^2+y^2+10x-2xy+26=0\)
\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x^2+5x+\frac{25}{4}\right)+\frac{27}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x+\frac{5}{2}\right)^2=\frac{-27}{2}\)
Dễ thấy \(VT\ge0\forall x;y\) mặt khác \(VP< 0\)
Do đó pt vô nghiệm
Bài 2:
\(A=263^2+74\cdot263+37^2\)
\(A=263^2+2\cdot263\cdot37+37^2\)
\(A=\left(263+37\right)^2\)
\(A=300^2\)
\(A=90000\)
b) tương tự
\(C=-1^2+2^2-3^2+...-99^2+100^2\)
\(C=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(C=\left(2-1\right)\left(1+2\right)+\left(4-3\right)\left(3+4\right)+...+\left(100-99\right)\left(99+100\right)\)
\(C=1+2+3+4+...+99+100\)
\(C=\frac{\left(100+1\right)\cdot100}{2}=5050\)
\(D=\left(3+1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2D=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2D=3^{64}-1\)
\(D=\frac{3^{64}-1}{2}\)
b: Sửa đề: \(B=263^2+54\cdot263+27^2\)
\(=263^2+2\cdot263\cdot27+27^2\)
\(=\left(263+27\right)^2=290^2=84100\)
c: \(C=136^2-2\cdot46\cdot136+46^2\)
\(=\left(136-46\right)^2=90^2=8100\)
d: \(D=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(=50+49+...+2+1\)
Số số hạng là (50-1):1+1=50(số)
Tổng là;
\(D=\dfrac{\left(50+1\right)\cdot50}{2}=51\cdot25=1225\)
a) \(A=\frac{97^3+83^3}{180}-97\cdot83\)
\(A=\frac{\left(97+83\right)\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=\frac{180\cdot\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=97^2-97\cdot83+83^2-97\cdot83\)
\(A=9409-2\cdot8051+6889\)
\(A=196\)
b) \(B=\left(50^2+48^2+...+2^2\right)-\left(49^2+47^2+...+1^2\right)\)
\(B=50^2+48^2+...+2^2-49^2-47^2-...-1^2\)
\(B=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(B=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...+\left(2+1\right)\left(2-1\right)\)
\(B=50+49+48+47+...+2+1\)
Số số hạng là : \(\left(50-1\right):1+1=50\)( số )
Tổng B là : \(\left(50+1\right)\cdot50:2=1275\)
Vậy....
1) Ta có :
\(x^2\ge0\forall x,y^2\ge0\forall y\)
\(\Rightarrow x^2+y^2\ge0\forall x,y\)
Ta lại có
\(x^2+y^2\ge2xy\)
Để 2xy đạt giá trị nhỏ nhất thì xy đạt giá trị nhỏ nhất
Nhưng cả x lẫn y nhất định phải cx dấu ko đk khác dấu
Dấu "=" xảy ra khi và chỉ khi x = y 0
Vậy GTNN của x2 + y2 là 0 khi và chỉ khi x = y = 0
Bài 2:
Ta thấy: \(\left|x+1\right|^{11}\ge0\)
\(\Rightarrow\left|x+1\right|^{11}+10\ge10\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy...
Bài 3:
\(B=x^2+9x+6=x^2+9x+\frac{81}{4}-\frac{57}{4}\)
\(=\left(x^2+9x+\frac{81}{4}\right)-\frac{57}{4}\)
\(=\left(x+\frac{9}{2}\right)^2-\frac{57}{4}\ge\frac{57}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{9}{2}\)
Bài 4: phân thức trên ko xác định khi mẫu bằng 0
Tức là \(x-7=0\Rightarrow x=7\)
P/s:Mấy bài này cx ko khó lắm bn tự làm sẽ thông minh hơn
WTF đăng một loạt vầy ai dám làm @@
Mấy bài này trong sách bài tập cx có bài mẫu
tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết
b) \(263^2+74.263+37^2\)
\(=\left(263+37\right)^2\)
\(=300^2\)
\(=90000\)
c) \(136^2-92.136+46^2\)
\(=\left(136-46\right)^2\)
\(=90^2\)
\(=8100\)