\(|x-2|+9y^2+12xy+4x^2=0\)

b) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

Bài 3:

a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)

\(\Leftrightarrow\left|x-2\right|+\left(3y+2x\right)^2=0\)

Dễ thấy \(VT\ge0\forall x;y\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\3y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{-4}{3}\end{matrix}\right.\)

Vậy...

b) \(3x^2+y^2+10x-2xy+26=0\)

\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x^2+5x+\frac{25}{4}\right)+\frac{27}{2}=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x+\frac{5}{2}\right)^2=\frac{-27}{2}\)

Dễ thấy \(VT\ge0\forall x;y\) mặt khác \(VP< 0\)

Do đó pt vô nghiệm

17 tháng 7 2019

Bài 2:

\(A=263^2+74\cdot263+37^2\)

\(A=263^2+2\cdot263\cdot37+37^2\)

\(A=\left(263+37\right)^2\)

\(A=300^2\)

\(A=90000\)

b) tương tự

\(C=-1^2+2^2-3^2+...-99^2+100^2\)

\(C=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)

\(C=\left(2-1\right)\left(1+2\right)+\left(4-3\right)\left(3+4\right)+...+\left(100-99\right)\left(99+100\right)\)

\(C=1+2+3+4+...+99+100\)

\(C=\frac{\left(100+1\right)\cdot100}{2}=5050\)

\(D=\left(3+1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)

\(2D=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)

\(2D=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)

\(2D=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

\(2D=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{32}+1\right)\)

\(2D=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2D=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2D=3^{64}-1\)

\(D=\frac{3^{64}-1}{2}\)

17 tháng 7 2019

B1: a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)

=> \(\left|x-2\right|+\left(3y+2x\right)^2=0\)

Ta có: \(\left|x-2\right|\ge0\forall x\)

         \(\left(3y+2x\right)^2\ge0\forall x;y\)

=> \(\left|x-2\right|+\left(3y+2x\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-2=0\\3y+2x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2x\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2.2=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{4}{3}\end{cases}}\)

Vậy ...

17 tháng 7 2019

\(A=263^2+74.263+37^2\)

\(=263^2+2.263.37+37^2\)

\(=\left(263+37\right)^2\)

\(=300^2=90000\)

\(B=136^2-92.136+46^2\)

\(=136^2-2.136.46+46^2\)

\(=\left(136-46\right)^2\)

\(=90^2=8100\)

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

18 tháng 7 2017

Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)

\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)

\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

Dấu = xảy ra khi :

\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)

CHÚC BẠN HỌC TỐT........... 

18 tháng 7 2017

mk chịu

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

1. tính a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\) b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\) c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\) d) \(\left(\dfrac{1}{2}x-2y\right)^3\) e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\) f) \(27x^3-8y^3\) g) 4(2x - 3y) - 4 - (2x-3y)2 2. rút gọn a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\) b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\) c)...
Đọc tiếp

1. tính

a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)

b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)

c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)

d) \(\left(\dfrac{1}{2}x-2y\right)^3\)

e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)

f) \(27x^3-8y^3\)

g) 4(2x - 3y) - 4 - (2x-3y)2

2. rút gọn

a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)

b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)

c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)

d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)

3. c/m các biểu thức sau ko phụ thuộc vào biến x,y

a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)

b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)

c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)

d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)

4. Tìm x

a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)

b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

c) \(49x^2+14x+1=0\)

d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

5. c/m biểu thức luôn dương:

a) \(A=16x^2+8x+3\)

b) \(B=y^2-5y+8\)

c) C= \(2x^2-2x+2\)

d) \(D=9x^2-6x+25y^2+10y+4\)

6. Tìm GTLN và GTNN của các biểu thức sau

a) \(M=x^2+6x-1\)

b) \(N=10y-5y^2-3\)

7. thu gọn

a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)

b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)

2
9 tháng 9 2017

Bạn đăng từ từ thôi!

Dài quá