\(\text{Tìm số tự nhiên n để n+18 và n-41 là hai số chính phương.}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt n+18 = k^2 (1) 
và n - 41 = m^2 (2) 
Lấy (1) trừ (2) ta được: 
k^2 - m^2 = 59 
=> (k-m)(k+m) = 59 
Do k + m > k-m và 59 = 1 . 59 
nên k+m = 59 và k-m = 1 
=> k+m = 59 và k-m = 1 thì k = 30 và m = 29 
Vậy n + 18 = k^2 = 30^2 = 900 
=> n = 882

 
9 tháng 3 2017

N=1!!!

10 tháng 3 2017

sai bet te le nhe

5 tháng 5 2017

Vì \(n^3\) là lập phương của 1 số tự nhiên

\(\Leftrightarrow n^3+1\) là bình phương của 1 số tự nhiên

\(\Leftrightarrow\orbr{\begin{cases}n^3=0\\n^3=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

Vậy n=0 hoặc n=1 thì \(\left(n^3+1\right)\) là số chính phương

5 tháng 5 2017

DO N^3 LÀ LẬP PHƯƠNG CỦA 1 SỐ TỰ NHIÊN

    N^3 + 1 LÀ BÌNH PHƯƠNG CỦA 1 SỐ TỰ NHIÊN

=> N^3 = 0 .HOẶC -1

=> N = 0 HOẶC 1

27 tháng 2 2017

Để \(\frac{n+6}{15}\) là số tự nhiên <=> n + 6 ⋮ 15 => n + 6 = 15k => n = 15k - 6 ( k thuộc N ) (1)

Ta có : \(\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}=3-\frac{5}{n+1}\)

Để \(3-\frac{5}{n+1}\)là số tự nhiên <=> \(\frac{5}{n+1}\)là số tự nhiên

=> n + 1 là ước của 5 => Ư(5) = { - 5; - 1; 1; 5 }

=> n + 1 = { - 5; - 1; 1; 5 }

=> n = { - 6; - 2; 0; 4 }

Mà theo (1) , n phải có dạng 15k - 6 => n = - 6

Mà theo đề bài n là số tự nhiên nên n không tồn tại

2A=2101-2100-299-....-22-2

=>2A-A=2101-2.2100+1

=>A=1

12 tháng 1 2019

\(A=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)

\(2A=2\left(2^{100}-2^{99}-...-1\right)\)

\(2A=2^{101}-2^{100}-...-2\)

\(2A-A=\left(2^{101}-2^{100}-...-2\right)-\left(2^{100}-2^{99}-...-1\right)\)

\(A=2^{101}-\left(2^{100}-1\right)=1\)