\(n^2+6n+2608\) là số chính phương

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

b) \(\frac{121212}{424242}=\frac{121212:60606}{424242:60606}=\frac{2}{7}\)

c) \(\frac{3.7.13.37.39-10101}{505050+707070}\)

\(=\frac{393939-10101}{1212120}\)

\(=\frac{383838}{1212120}\)

\(=\frac{19}{60}\)

26 tháng 4 2020

ai biêt

2A=2101-2100-299-....-22-2

=>2A-A=2101-2.2100+1

=>A=1

12 tháng 1 2019

\(A=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)

\(2A=2\left(2^{100}-2^{99}-...-1\right)\)

\(2A=2^{101}-2^{100}-...-2\)

\(2A-A=\left(2^{101}-2^{100}-...-2\right)-\left(2^{100}-2^{99}-...-1\right)\)

\(A=2^{101}-\left(2^{100}-1\right)=1\)

5 tháng 5 2017

Vì \(n^3\) là lập phương của 1 số tự nhiên

\(\Leftrightarrow n^3+1\) là bình phương của 1 số tự nhiên

\(\Leftrightarrow\orbr{\begin{cases}n^3=0\\n^3=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

Vậy n=0 hoặc n=1 thì \(\left(n^3+1\right)\) là số chính phương

5 tháng 5 2017

DO N^3 LÀ LẬP PHƯƠNG CỦA 1 SỐ TỰ NHIÊN

    N^3 + 1 LÀ BÌNH PHƯƠNG CỦA 1 SỐ TỰ NHIÊN

=> N^3 = 0 .HOẶC -1

=> N = 0 HOẶC 1

5 tháng 4 2017

\(A=\frac{6n+99}{3n+4}\)

\(A=\frac{6n+8+91}{3n+4}\)

\(=\frac{2\left(3n+4\right)+91}{3n+4}\)

\(=2+\frac{91}{3n+4}=\frac{7.13}{3n+4}\)

vậy  \(3n+4\ne7\)

\(3n+4\ne13\)

\(3n+4\ne91\)

\(\Rightarrow\)\(3n+4\ne1;3;29\)

mk nghĩ vậy bạn ạ

20 tháng 12 2018

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)

29 tháng 3 2020

Do n + 1 là SCP nên khi chia cho 3 chỉ có thể có số dư là 0 hoặc 1

Nếu \(n+1⋮3\)thì \(n\equiv2\left(mod3\right)\)

\(\Rightarrow2n+1\equiv2\left(mod3\right)\)(Vô lý)

Do đó n + 1 chia 3 dư 1

\(\Rightarrow n⋮3\)

Do 2n + 1 là SCP lẻ nên 2n + 1 chia 8 dư 1 

\(\Rightarrow2n⋮8\)

\(\Rightarrow n⋮4\)

Vì \(n⋮4\)nên n + 1 chia 8 dư 1

\(\Rightarrow n⋮8\)

Vì \(n⋮8\)và \(n⋮3\)và (3,8) = 1

\(\Rightarrow n⋮24\)

Với n = 24 thi 5n + 1, n + 1, 2n + 1 đề là các SCP

Vậy n = 24

Lớp 6a3 đội tuyển toán dk

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS