\(\text{Cho}\)\(\Delta ABC\)\(\text{nhọn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Lời giải bạn Thanh đúng rồi, mình vẽ hình và trình bày lại cho rõ hơn như sau:

A B C M D E I K

a) Do D và M đối xứng qua AB nên AD = AM

         E và M đối xứng qua AC nên AE = AM

=> AD = AE (vì cùng bằng AM)

b) Theo câu a) thì AD = AE nên tam giác ADE cân => \(\widehat{ADE}=\widehat{AED}\) (1)

tam giác AID = tam giác AIM t(trường hợp CGC) vì có AI chung, AD = AM, \(\widehat{DAI}=\widehat{IAM}\)

=> \(\widehat{ADI}=\widehat{AMI}\)    (2)

Tương tự: \(\widehat{AEK}=\widehat{AMK}\)    (3)

Từ (1), (2) và (3) suy ra \(\widehat{AMI}=\widehat{AMK}\) +> AM là phân giác góc \(\widehat{IMK}\)

c) Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

14 tháng 10 2016

BAI NAY DE QUA  NHO K DUNG NHA !

cau a

vi D,M  doi xung nen tam giac ADM co AD=AM

cmtt voi tam giac AME nen co AM=AE

tu do co AD=AE

cau b

cm tam AIK=tam giac AIM do chung AD;AD=AM;DAI=MAI

nen goc AID= goc AMI

CMTT VOI tam giacAKM va AKE CO AMK=AEK

co AD = AE NEN TAM GIAC ADE CAN NE ADI=AEK

TU LAM NOT CAU C GOI Y AM LA DUONG CAO THI DE NHO NHAT

27 tháng 12 2018

Hình bạn tự vẽ :>

a, \(\Delta ABC\) có: \(\left\{{}\begin{matrix}AE=BE\left(gt\right)\\AD=DC\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\) DE là đường trung bình \(\Rightarrow DE//BC\) và \(DE=\dfrac{BC}{2}\)

Tương tự: \(\Delta GBC\) có MN là đường trung bình

\(\Rightarrow MN//BC\) và \(MN=\dfrac{BC}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}DE//MN\\DE=MN\end{matrix}\right.\)\(\Rightarrow MNDE\) là hình bình hành

27 tháng 12 2018

b, Điều kiện của \(\Delta ABC\)là \(BD\perp CE\)

17 tháng 3 2020

\(\text{GIẢI :}\)

A B C M E D

Chứng minh :

a) Xét \(\diamond\text{AEMD}\), có \(\hept{\begin{cases}\text{​AE // DM ​}\\\text{EM // AD}\end{cases}}\)

\(\Rightarrow \text{ }\diamond\text{AEMD}\) là hình bình hành.

b) Để hình bình hành AEMD là hình thoi \(\Rightarrow\) AM là đường phân giác của góc A.

c) Để hình bình hành AEMD là hình vuông \(\Rightarrow\text{ }\hept{\begin{cases}\bigtriangleup\text{ABC vuông tại A}\\\text{AM là đường phân giác góc A}\end{cases}}\).

21 tháng 3 2020

\(\text{GIẢI :}\)

A B C M D E

a) Xét \(\diamond\text{ADME}\)\(DM\text{ }//\text{ }AB\), \(EM\text{ }//\text{ }AC\) \(\Rightarrow\text{ }\diamond\text{ADME}\) là hình bình hành.

b) Để hình bình hành ADME là hình thoi \(\Leftrightarrow\text{ }AM\) là tia phân giác của góc A.

Vậy M là giao điểm của tia phân giác góc A và cạnh BC thì ADME là hình thoi.

c) Để hình bình hành ADME là hình chữ nhật \(\Leftrightarrow\angle\text{A}=90^0\text{ }\Leftrightarrow\text{ }\bigtriangleup\text{ABC}\) vuông tại A.

7 tháng 10 2019

Nữa ghi đề cho chính xác dùm S phải là giao điểm của CK và AD chứ

α = 60° α = 60° α = 60° A A A B B B D D D C C C E E E F F F K K K S S S

a/ Vì K là điểm đối xứng của F qua BC(gt) nên ta có ngay CF=CK suy ra CKF là tam giác cân

\(\Delta CKF\)cân ở C(cmt) có CB là đường trung trực đồng thời là đường phân giác nên\(\widehat{KCF}=2\widehat{BCD}=2\widehat{BAC}=2.60^0=120^0\)

b/Vì S là giao điểm của CK và AD, CD//AB nên \(\widehat{SDC}=\widehat{BAC}=60^0,\widehat{SCD}+\widehat{KCF}=180^0\Rightarrow\widehat{SDC}=60^0=180^0-120^0=\widehat{SCD}\)

Vậy tam giác SCD đều nên SC=SD

c/\(SC=SD\left(cmt\right)\Leftrightarrow SC+CF=SD+DE\left(CF=DE\left(gt\right)\right)\Leftrightarrow SC+CK=SE\left(CF=CK\left(cmt\right)\right)\Leftrightarrow SK=SE\)Vì \(\Delta SCD\)đều(cmt) nên \(\widehat{KSE}=60^0\)

Vậy tam giác SEK cân có \(\widehat{KSE}=60^0\) nên là tam giác đều

d/Tam giác SEK đều(cmt) suy ra \(\widehat{SEK}=60^0=\widehat{BAC}\),mà A;E;S thẳng hàng nên suy ra AB//KE

9 tháng 10 2019

Vẽ lại hình, ko hiện lên thì vô trang cá nhân

21 tháng 6 2019

A B C D H E I K O

Gọi Q và O lần lượt là giao điểm cuarDH và AB; HE và AC. ( Điểm Q chưa ký hiệu trên hình vì nhỏ quá nhé ).

Ta dễ dàng chứng minh được: tam giác vuông KHO = tam giác vuông KEO ( hai cạnh góc vuông )

=> \(\widehat{HKO}=\widehat{EKO}\)<=> KO là phân giác ngoài của tam giác IKH ( 1 )

Do \(AH\perp BC\)=> HC là phân giác ngoài của tam giác IKH ( 2 )

Mà KO cắt HC tại C ( 3 ). Từ ( 1 ); ( 2 ) và ( 3 ) => IC là phân giác trong của tam giác IKH <=> \(\widehat{HIC}=\widehat{CIK}=\frac{1}{2}\widehat{HIE}\)( * )

Ta dễ dàng chứng minh được : tam giác vuông DIQ = tam giác vuông HIQ ( hai cạnh góc vuông ) => \(\widehat{DIQ}=\widehat{QIH}=\frac{1}{2}\widehat{DIH}\)( # )

Do D; I ; E thẳng hàng ( theo bài ra ) nên \(\widehat{DIH}+\widehat{HIE}=180^o\)( % )

Từ ( * ); ( # ) và ( % ) => \(\widehat{QIH}+\widehat{HIC}=\frac{1}{2}\widehat{DIH}+\frac{1}{2}\widehat{HIE}\Leftrightarrow\widehat{BIC}=\frac{1}{2}\left(\widehat{DIH}+\widehat{HIE}\right)=\frac{1}{2}.180^o=90^o\)

Do hai góc AIC và BIC là hai góc nằm ở vị trí kề bù nên : \(\widehat{AIC}+\widehat{BIC}=180^o\Leftrightarrow\widehat{AIC}=180^o-\widehat{BIC}=180^o-90^o=90^o\)

Tương tự, ta chứng minh được \(\widehat{AKB}=90^o\)Vậy số đo \(\widehat{AIC},\widehat{AKB}\)đều là \(90^o.\)

22 tháng 6 2019

Cám ơn bạn Đỗ Đức Lợi nha !

a: Ta có M và D đối xứng nhau qua AB

nên AM=AD

=>ΔAMD cân tại A

mà AB là đường cao

nên AB là phân giác

b: Ta có: M và E đối xứng nhau qua AC

nên AM=AE

=>AE=AD

22 tháng 3 2020

\(\text{GIẢI :}\)

A B C H D O I x y

a) Xét \(\diamond\text{ACDO}\)\(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)

\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.

\(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.

b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)

Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)

hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)

Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).

Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :

\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)

\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)

\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\)\(\widehat{BAH}\) đối đỉnh)

\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)

\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).