Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là trọng tâm của tam giác ABC, ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Rightarrow \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 3\overrightarrow {MG} \)
Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3 \Leftrightarrow \left| {3\overrightarrow {MG} } \right| = 3\) hay \(MG = 1\)
Vậy tập hợp các điểm M thỏa mãn là đường tròn tâm G, bán kính 1.
Nói cách khác có vô số điểm M thỏa mãn ycbt.
Chọn A.
\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)
=>vecto MA=0 hoặc M là trọng tâm của ΔABC
=>M là trọng tâm của ΔABC hoặc M trùng với A
\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MA}-\overrightarrow{MC}=-\overrightarrow{MB}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{BM}\)
Vậy M là điểm sao cho tứ giác ACBM là hình bình hành.
Có \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{BA}+\overrightarrow{MC}\).
Suy ra: \(\overrightarrow{BA}+\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MC}=\overrightarrow{AB}\)
Vậy điểm M được xác định sao cho \(\overrightarrow{MC}=\overrightarrow{AB}\).
Gọi \(G\)là trọng tâm tam giác \(ABC\).
Khi đó \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=3\left|\overrightarrow{MG}\right|=3MG=3\)
\(\Rightarrow MG=1\).
Suy ra \(M\)là tập hợp các điểm cách \(G\)\(1\)đơn vị.
Do đó \(M\in\left(G,1\right)\).