Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,7x^2-28x+28\)
\(=7\left(x^2-4x+4\right)\)
\(=7\left(x^2-2x2+2^2\right)\)
\(=7\left(x-2\right)^2\)
b) \(x^2-7x+12=x^2-3x-4x+12=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
c) \(x^3-2x+4=x^3-4x+2x+4=x\left(x^2-4\right)+2\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
\(A=\dfrac{x-2014}{\dfrac{x^2-4x+4-x^2-2x-1}{\left(x+1\right)\left(x-2\right)}:\dfrac{x^2-4x+4+x^2+2x+1}{\left(x+1\right)\left(x-2\right)}}\)
\(=\dfrac{x-2014}{\dfrac{-6x+3}{\left(x+1\right)\left(x-2\right)}\cdot\dfrac{\left(x+1\right)\left(x-2\right)}{2x^2-2x+5}}\)
\(=\left(x-2014\right)\cdot\dfrac{2x^2-2x+5}{-6x+3}\)
Để A>=0 thì \(\left(x-2014\right)\left(-6x+3\right)>=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2014\right)< =0\)
=>1/2<x<=2014
b) \(263^2+74.263+37^2\)
\(=\left(263+37\right)^2\)
\(=300^2\)
\(=90000\)
c) \(136^2-92.136+46^2\)
\(=\left(136-46\right)^2\)
\(=90^2\)
\(=8100\)
Áp dụng BĐT Bernoulli ta có:
\(\left(\frac{2x}{x+y}\right)^n=\left(1+\frac{x-y}{x+y}\right)^n\ge1+\frac{n\left(x-y\right)}{x+y}\)
\(\left(\frac{2y}{x+y}\right)^n=\left(1-\frac{x-y}{x+y}\right)^n\ge1-\frac{n\left(x-y\right)}{x+y}\)
Cộng theo vế 2 BĐT trên ta có:
\(\left(\frac{2x}{x+y}\right)^n+\left(\frac{2y}{x+y}\right)^n\ge2\) Hay \(\frac{a^n+b^n}{2}\ge\left(\frac{a+b}{2}\right)^n\)
\(a,5-3x\ge0\)
\(\Rightarrow-3x\ge-5\)
\(\Rightarrow x\le\frac{5}{3}\)
\(b,2-4x\le0\)
\(\Rightarrow-4x\le-2\)
\(\Rightarrow x\ge\frac{2}{4}\)
\(\Rightarrow x\ge\frac{1}{2}\)
\(c,4x-7\ge0\)
\(\Rightarrow4x\ge7\)
\(\Rightarrow x\ge\frac{7}{4}\)