K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

1. a) D = [1;4] \{2;3}

b) D = (0;+∞)

2.

\(2\overrightarrow{a}\)= (2;4) và \(3\overrightarrow{b}\) = (9;12)

\(2\overrightarrow{a}\) + \(3\overrightarrow{b}\) = (2+9; 4+12)

⇔ (11; 16)

Vậy \(\overrightarrow{m}\) = (11;16)

6 tháng 7 2019

a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}

b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).

Vậy tập xác định D = \([-2;+\infty)/1\)

7 tháng 7 2019

y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)

suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm

\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)

\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)

24 tháng 7 2019

Hàm số xác định khi

X-2m>=0 suy ra x>=2m (*)

4-2x>=0 suy ra x <=2

Lại có tập xác định hàm số là [1;2] nên 1 <=x <=2 (**)

Từ (*) và (**) suy ra 2m=1 ;m=1/2

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
NV
24 tháng 10 2019

Câu 1: Thay kí hiệu tham số là m cho đỡ nhầm lẫn với hệ số a;b;c của hàm

\(f\left(x\right)=4x^2-\left(4m+3\right)x+m^2+2=0\)

\(a=4>0\) ; \(-\frac{b}{2a}=\frac{4m+3}{8}\)

Hàm đồng biến khi \(x>\frac{4m+3}{8}\) và nghịch biến khi \(x< \frac{4m+3}{8}\)

- TH1: Nếu \(\frac{4m+3}{8}\le0\Leftrightarrow m\le-\frac{3}{4}\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=m^2+2=3\Rightarrow\left[{}\begin{matrix}m=1>-\frac{3}{4}\left(l\right)\\m=-1\end{matrix}\right.\)

- TH2: Nếu \(\frac{4m+3}{8}\ge2\Leftrightarrow m\ge\frac{13}{4}\Rightarrow f\left(x\right)\) nghịch biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(2\right)=m^2-8m+12=3\)

\(\Leftrightarrow m^2-8m+9=0\Rightarrow\left[{}\begin{matrix}m=4+\sqrt{7}\\m=4-\sqrt{7}< \frac{13}{4}\left(l\right)\end{matrix}\right.\)

- TH3: \(0< \frac{4m+3}{8}< 2\Rightarrow0< m< \frac{14}{3}\)

\(\Rightarrow f\left(x\right)_{min}=f\left(\frac{4m+3}{8}\right)=\frac{23-24m}{16}=2\Rightarrow m=-\frac{3}{8}\left(l\right)\)

NV
25 tháng 10 2019

Câu 2:

Ta có \(a=-1< 0\) ; \(-\frac{b}{2a}=1\in\left[-1;2\right]\)

\(\Rightarrow f\left(x\right)_{max}=f\left(1\right)=m-3\)

\(\Rightarrow m-3=3\Rightarrow m=6\)

Câu 3:

\(a=1>0\Rightarrow f\left(x\right)_{min}=f\left(-\frac{b}{2a}\right)=f\left(-m\right)\)

\(\Rightarrow-m^2+5=1\Rightarrow m^2=4\Rightarrow m=\pm2\)

Câu 4:

\(a=m>0\); \(-\frac{b}{2a}=\frac{2}{m}\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(-\infty;\frac{2}{m}\right)\)

Để hàm số nghịch biến trên \(\left(-1;2\right)\)

\(\Leftrightarrow2\le\frac{2}{m}\Leftrightarrow m\le1\Rightarrow m=1\)

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
NV
16 tháng 9 2020

\(\left\{{}\begin{matrix}9-3\left|x\right|\ge0\\9x^2-1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x>\frac{1}{3}\\x< -\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{3}< x\le\frac{1}{3}\\-3\le x< -\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow D_1=[-3;-\frac{1}{3})\cup(\frac{1}{3};3]\)

\(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne-2\end{matrix}\right.\) \(\Rightarrow x>-2\)

\(\Rightarrow D_2=\left(-2;+\infty\right)\)

\(\Rightarrow A=\left\{-1;1;2;3\right\}\)