K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

Nhận thấy  y = x - 2 + 1 x + 2  có nghĩa khi x - 2 ≥ 0 x + 2 > 0 ⇔ x ≥ 2 x > - 2 ⇔ x ≥ 2 .

 

Do đó tập xác định của hàm số đã cho là  [ 2 ; + ∞ ) .

 

Vậy đáp án là D.

4 tháng 7 2019

Đáp án: D

8 tháng 7 2021

1.Ý C

Hàm số có nghĩa khi \(x^2+14x+45\ne0\Leftrightarrow x\ne\left\{-5;-9\right\}\)

\(\Rightarrow D=R\backslash\left\{-5;-9\right\}\)

2. Ý D

Hàm số có nghĩa khi \(\left\{{}\begin{matrix}x+7\ge0\\x^2+6x-16\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-7\\x\ne\left\{2;-8\right\}\end{matrix}\right.\)

\(\Rightarrow D=\)\([-7;+ \infty) \)\(\backslash\left\{2\right\}\)

21 tháng 9 2021

ĐK : \(x^2+14x+45\ne0\)   

\(\Leftrightarrow\hept{\begin{cases}x\ne-5\\x\ne-9\end{cases}}\)   

\(TXĐ:D=R\backslash\left\{-5;-9\right\}\)   

Chọn C 

Câu 1: Tập xác định của hàm số y=3x2+2x+2 là A.∅      B.R       C.R\{2}            D.[3;+∞)Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)A.2     B.3         C.4         D.5Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\)      B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)     ...
Đọc tiếp

Câu 1: Tập xác định của hàm số y=3x2+2x+2 là 

A.∅      B.R       C.R\{2}            D.[3;+∞)

Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)

A.2     B.3         C.4         D.5

Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:

A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\)      B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)      C.x=\(-\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)

 D. Hệ vô nghiệm

Câu 4: Cho hệ:\(\left\{{}\begin{matrix}\dfrac{3}{x-1}+\dfrac{4}{y-2}=1\\\dfrac{1}{x-1}-\dfrac{2}{y-2}=2\end{matrix}\right.\) nếu đặt a=\(\dfrac{1}{x-1}\);b=\(\dfrac{1}{y-2}\)(x≠1;y≠2) hệ trở thành 

A.\(\left\{{}\begin{matrix}3a+4b=1\\a-2b=2\end{matrix}\right.\)       B.\(\left\{{}\begin{matrix}3a-4b=1\\a-2b=2\end{matrix}\right.\)      C.\(\left\{{}\begin{matrix}3a+4b=1\\a+2b=2\end{matrix}\right.\)        D.\(\left\{{}\begin{matrix}3a-4b=1\\a+2b=2\end{matrix}\right.\)

Câu 5: Hệ phương trình sau có bao nhiêu nghiệm (x;y): \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{4}{x}+\dfrac{6}{y}=6\end{matrix}\right.\)

A.0       B.1          C.2              D.Vô nghiệm

Câu 6: Tìm nghiệm (x;y) của hệ :\(\left\{{}\begin{matrix}x-y=1\\2x+y-z=2\\y+z=3\end{matrix}\right.\)

A.(\(\dfrac{7}{4};\dfrac{3}{4};\dfrac{9}{4}\))          B.(\(-\dfrac{7}{4};\dfrac{3}{4};-\dfrac{9}{4}\))      C.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))       D.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))   

Câu 7: Hệ phương trình:\(\left\{{}\begin{matrix}x+y=2\\x+2z=3\\y+z=2\end{matrix}\right.\) có nghiệm là?

A.(1;1;1)     B.(2;2;1)        C.(-1;1;2)      D.(1;2;1)

Câu 8: Cho tam giác ABC có a2+b2>c2 khi đó 

A.Góc C>90o      B. Góc C<90o      C. Góc C=90o    D. Không thể kết luận được gì về góc 

C

Câu 9 : Tập nghiệm bất phương trinh x2<0

A.R    B.∅       C.(-1;0)       D.(-1;+∞)

Câu 10: Tập nghiệm của bất phương trình (x+1)2≥0

A.R       B.∅      C.(-1;0)        D.(-1;+∞)

 

1
2 tháng 2 2021

Chọn D.

 

 

Chọn A.

 

 

Chọn D.

 

 

Chọn A.

 

 

Chọn A.

mình chỉ biết làm đến đây thôi @@

Chọn B

30 tháng 9 2021

Chọn B

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021

Chọn A

30 tháng 9 2021

A. R\{-2}

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Biểu thức \(4{x^2} - 1\) có nghĩa với mọi \(x \in \mathbb{R}\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)

b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} + 1 \ne 0,\)tức là với mọi \(x \in \mathbb{R}\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)

c) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(\frac{1}{x}\) có nghĩa, tức là khi \(x \ne 0,\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}{\rm{\backslash }}\{ 0\} \)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hàm \(y = 2{x^3} + 3x + 1\) là hàm đa thức nên có tập xác định \(D = \mathbb{R}\)

b) Biểu thức \(\frac{{x - 1}}{{{x^2} - 3x + 2}}\)có nghĩa khi \({x^2} - 3x + 2 \ne 0 \Leftrightarrow x \ne 1\)và \(x \ne 2\)

Vậy tập xác định của hàm số đã cho là \(D = \mathbb{R}/\left\{ {1;2} \right\}\)

c) Biểu thức \(\sqrt {x + 1}  + \sqrt {1 - x} \) có nghĩa khi \(x + 1 \ge 0\) và \(1 - x \ge 0\), tức là \( - 1 \le x \le 1\)

Vậy tập xác định của hàm số đã cho là \(D = \left[ { - 1;1} \right]\)