Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1>để pt có hai nghiệm trái dấu <=> a.c <0
<=>(m-1).(m-3)<0
<=> m2 -4m +3 <0 <=> 1<m<3
Vậy m \(\varepsilon\)(1;3) thì pt có hai nghiệm trái dấu
2) Th1 : x2 -5x+6 \(\ge\)0<=>x\(\varepsilon\) (-\(\infty;2\)]\(\cup[3;\infty)\)thì pt đã cho trở thành
x2 -5x+6=x2-5x+6 => 0=0 đúng vs mọi x
Th2 : x2-5x+6 <0 => x\(\varepsilon\left(2;3\right)\)thf pt đã cho trowrr thành
-x2 +5x -6 = x2 -5x +6 <=> -2x2 + 10x -12 =0 <=> x=3(l) ; x=2(l)
kết hợp th1 và Th2 ta có : x \(\varepsilon(-\infty;2]\cup[3;\infty)\)
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}13x>\dfrac{7}{3}\\4x-16< 3x-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{39}\\x< 2\end{matrix}\right.\Leftrightarrow\dfrac{7}{39}< x< 2\)
mà x nguyên
nên x=1
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\mx>2-m\end{matrix}\right.\)
=>x<2 và mx>2-m
Nếu m=0 thì bất phươg trình vô nghiệm
Nếu m<>0 thì BPT sẽ tương đương với:
\(\left\{{}\begin{matrix}x< 2\\x>\dfrac{2-m}{m}\end{matrix}\right.\)
Để BPT vô nghiệm thì 2-m/m>=2
=>\(\dfrac{2-m}{m}-2>=0\)
=>\(\dfrac{2-m-2m}{m}>=0\)
=>\(\dfrac{3m-2}{m}< =0\)
=>0<m<=2/3
1.
- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)
- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)
Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)
2.
Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)
3.
\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)
4.
\(4x^2+4x+1-3x+9>4x^2+10\)
\(\Leftrightarrow x>0\)
5.
\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)
6.
\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)
\(\dfrac{1}{2}< x< 2\)