K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

Đáp án C

11 tháng 6 2018

Đáp án A

Vậy không có giá trị m thỏa mãn yêu cầu bài toán.

 

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

7 tháng 10 2019

Đáp án: C.

y' = 3 x 2  + 2(m + 3)x + m

y'(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = -3

Với m = -3, y' = 3 x 2  - 3 ⇒ y''(x) = 6x.

Vì y''(1) = 6 > 0 nên hàm số đạt cực tiểu khi m = -3.

25 tháng 6 2017

Đáp án: C.

y' = 3 x 2  + 2(m + 3)x + m

y'(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = -3

Với m = -3, y' = 3 x 2  - 3 ⇒ y''(x) = 6x.

Vì y''(1) = 6 > 0 nên hàm số đạt cực tiểu khi m = -3.