Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập hợp các giá trị nguyên của x để M = \(|x-\left\{\frac{5}{4}\right\}|+|x+2|\)
đạt giá trị nhỏ nhất
\(\Rightarrow\sqrt{x}-3\)phải ước của 5: 1;5;-1;-5
\(\Rightarrow\sqrt{x}-3\)=1\(\Rightarrow\)x=16
\(\Rightarrow\sqrt{x}-3\)=5\(\Rightarrow\)x=64
\(\Rightarrow\sqrt{x}-3\)=-1\(\Rightarrow\)x=4
\(\Rightarrow\sqrt{x}-3\)=-5\(\Rightarrow\sqrt{x}\)=-2 \(\Rightarrow\)x=-4
mà ta có căn của x là 1 số luôn luôn lớn hơn hoặc =0 nên cái này ta loại nghe bạn
vậy x=\(\hept{\begin{cases}4\\64\\16\end{cases}}\)
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
Lời giải:
$A=\frac{x-3}{1-x}=\frac{(x-1)-2}{1-x}=-1-\frac{2}{1-x}=-1+\frac{2}{x-1}$
Để $A$ nguyên thì $\frac{2}{x-1}$ nguyên. Với $x$ nguyên, điều này xảy ra khi $2\vdots x-1$
$\Rightarrow x-1\in\left\{1; -1; 2; -2\right\}$
$\Rightarrow x\in \left\{2; 0; 3; -1\right\}$
\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với \(xy\ge0\) ta có:
\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Lập bảng xét dấu:
Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Mmin=13/4 khi \(x\in\left\{-1;0;1\right\}\)
mình làm sai rồi nhé bạn
là dấu "=" xảy ra khi xy>=0
thật sự xin lỗi