K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \cos \left( {2x - \frac{\pi }{3}} \right) \le 1 \Leftrightarrow  - 2 \le 2{\rm{cos\;}}\left( {2x - \frac{\pi }{3}} \right) \le 2\;\; \Leftrightarrow  - 3 \le 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1 < 1\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = 2\cos \left( {2x - \frac{\pi }{3}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \sin x \le 1,\;\; - 1 \le \cos \alpha  \le 1\;\; \Leftrightarrow  - 2 \le \sin x + \cos x \le 2\)

\( \Rightarrow \) Tập giá trị của hàm số \(y = \sin x + \cos x\) là \(T = \left[ { - 2;2} \right]\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1 \Rightarrow  - 2 \le 2\sin \left( {x - \frac{\pi }{4}} \right) \le 2\; \Rightarrow  - 2 - 1 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 2 - 1\)

\( \Rightarrow  - 3 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 1\)

Vây tập giá trị của hàm số \(y = 2\sin \left( {x - \frac{\pi }{4}} \right) - 1\) là \(T = \left[ { - 3;1} \right]\).

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Vì \( - 1 \le \cos x \le 1 \Rightarrow 0 \le 1 + \cos x \le 2 \Rightarrow 0 \le \sqrt {1 + \cos x}  \le \sqrt 2 \;\; \Rightarrow  - 2 \le \sqrt {1 + \cos x}  - 2 \le \sqrt 2  - 2\)

Vậy tập giá trị của hàm số \(y = \sqrt {1 + \cos x}  - 2\) là \(T = \left[ { - 2;\sqrt 2  - 2} \right]\)

12 tháng 2 2019

31 tháng 3 2017

a) với mọi x thuộc tập xác định của hàm số đã cho ta có

0 ≤ cosx ≤ 1 => y = 2√cosx + 1 ≤ 3.

Giá trị y = 3 đạt được khi cosx = 1 ⇔ x = k2π, k ∈ Z, do đó max y = 3.

b) ta có -1 ≤ sinx ≤ 1, ∀x => 2 ≥ -2sinx ≥ -2 => 1 ≤ y = 3 – 2sinx ≤ 5, ∀x .

Giá trị y = 5 đạt được khi sinx = -1 ⇔ x = −π2+k2π−π2+k2π . k ∈ Z.

Giá trị y = 1 đạt được khi sinx = 1 ⇔ x = π2+k2ππ2+k2π, k ∈ Z.

Vậy max y = 5 ; min y = 1.

 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).

Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)

b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\) 

Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)

 Vậy tập xác định của hàm số là \(D = \mathbb{R}\)

4 tháng 7 2019

12 tháng 9 2021

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)