Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện \(cosx\ne0\Leftrightarrow cosx\ne90\Leftrightarrow\left\{{}\begin{matrix}x\ne90+k2\pi\\x\ne-90+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)
đặc \(tanx=t\) \(\Rightarrow t^2-\left(1+\sqrt{3}\right)t+\sqrt{3}=0\)
ta có : \(a+b+c=1-\left(1+\sqrt{3}\right)+\sqrt{3}=0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt \(\left\{{}\begin{matrix}t=1\\t=\sqrt{3}\end{matrix}\right.\)
với \(t=1\Leftrightarrow tanx=1\) \(\Leftrightarrow tanx=45\Leftrightarrow x=45+k\pi\left(tmđk\right)\)
với \(t=\sqrt{3}\Leftrightarrow tanx=\sqrt{3}\) \(\Leftrightarrow tanx=60\Leftrightarrow x=60+k\pi\left(tmđk\right)\)
(trong đó \(k\in Z\) )
vậy ...............................................................................................................
\(tan\left(\dfrac{x}{2}\right)=\sqrt{3}\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{2\pi}{3}+k2\pi\) (\(k\in Z\))
\(tanx=-tan\dfrac{\pi}{5}\)
\(\Leftrightarrow tanx=tan\left(-\dfrac{\pi}{5}\right)\)
\(\Leftrightarrow x=-\dfrac{\pi}{5}+k\pi\)
Mình quên mất, nó nằm trong khoảng (π/2; π) nha, mình xin lỗi
b/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow\left(1-\frac{sinx}{cosx}\right)\left(1+sinx\right)=1+\frac{sinx}{cosx}\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(1+sinx\right)=sinx+cosx\)
\(\Leftrightarrow cosx+sinx.cosx-sinx-sin^2x=sinx+cosx\)
\(\Leftrightarrow sin^2x+2sinx-sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sinx-cosx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sinx-cosx=-2\left(1\right)\end{matrix}\right.\)
Xét \(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-2\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}< -1\) (vô nghiệm)
a/ ĐKXĐ: \(sin4x\ne0\)
\(\frac{sinx}{cosx}+\frac{cos2x}{sin2x}=\frac{2cos4x}{sin4x}\)
\(\Leftrightarrow2sin^2x.cos2x+2cos^22x=2cos4x\)
\(\Leftrightarrow\left(1-cos2x\right)cos2x+2cos^22x=4cos^22x-2\)
\(\Leftrightarrow3cos^22x-cos2x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\left(l\right)\\cos2x=-\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow2x=\pm arccos\left(-\frac{2}{3}\right)+k2\pi\)
\(\Leftrightarrow x=\pm\frac{1}{2}arccos\left(-\frac{2}{3}\right)+k\pi\)
Lê Huy Hoàng:
a) ĐK: $x\in\mathbb{R}\setminus \left\{k\pi\right\}$ với $k$ nguyên
PT $\Leftrightarrow \tan ^2x-4\tan x+5=0$
$\Leftrightarrow (\tan x-2)^2+1=0$
$\Leftrightarrow (\tan x-2)^2=-1< 0$ (vô lý)
Do đó pt vô nghiệm.
c)
ĐK:.............
PT $\Leftrightarrow 1+\frac{\sin ^2x}{\cos ^2x}-1+\tan x-\sqrt{3}(\tan x+1)=0$
$\Leftrightarrow \tan ^2x+\tan x-\sqrt{3}(\tan x+1)=0$
$\Leftrightarrow \tan ^2x+(1-\sqrt{3})\tan x-\sqrt{3}=0$
$\Rightarrow \tan x=\sqrt{3}$ hoặc $\tan x=-1$
$\Rightarrow x=\pi (k-\frac{1}{4})$ hoặc $x=\pi (k+\frac{1}{3})$ với $k$ nguyên
d)
ĐK:.......
PT $\Leftrightarrow \tan x-\frac{2}{\tan x}+1=0$
$\Leftrightarrow \tan ^2x+\tan x-2=0$
$\Leftrightarrow (\tan x-1)(\tan x+2)=0$
$\Rightarrow \tan x=1$ hoặc $\tan x=-2$
$\Rightarrow x=k\pi +\frac{\pi}{4}$ hoặc $x=k\pi +\tan ^{-2}(-2)$ với $k$ nguyên.
\(y=\dfrac{sinx+1}{sinx}\)
ĐKXĐ: \(sinx\ne0\Rightarrow x\ne k\pi\)
\(y=\dfrac{sin2x+cosx}{tanx-sinx}\)
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\left(\dfrac{1}{cosx}-1\right)\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\)
\(\Rightarrow sin2x\ne0\)
\(\Rightarrow x\ne\dfrac{k\pi}{2}\)
đây nha bn
tan x = 1 ⇔ tan x = tan π/4 ⇔ x = π/4 + kπ, k ∈ Z
vậy pt có No như trên