\(\tan73^{\sigma}.tan37^{\phi}.tan53^{\sigma}.tan17^{\sigma}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\)\(VT-VP=(a-b)^2(2a^2bc+2ab^2c-abc^2+3ac^3+3bc^3)+(a-c) (b-c) (3 a^2b^2+2 a^2b c+2ab^2c+2abc^2)\ge0\)

25 tháng 2 2020

Ủa nãy trong tin nhắn anh nhớ có điều kiện a, b, c > 0 mà? Sao tự nhiên xóa mất-_-

12 tháng 4 2020

Với dữ kiện đề bài \(a+b+c+2=abc\) ta đặt:

\(a=\frac{y+z}{x};b=\frac{x+z}{y};c=\frac{x+y}{z}\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{3}{4}\)

BĐT<=> \(\sqrt{\frac{a^2-1}{a^2}}+\sqrt{\frac{b^2-1}{b^2}}+\sqrt{\frac{c^2-1}{c^2}}\le\frac{3\sqrt{3}}{2}\)

<=> \(\sqrt{1-\frac{1}{a^2}}+\sqrt{1-\frac{1}{b^2}}+\sqrt{1-\frac{1}{c^2}}\le\frac{3\sqrt{3}}{2}\)

Áp dụng BĐT buniacoxki cho VT ta có :

\(VT\le\sqrt{3.\left(3-\frac{1}{a^2}-\frac{1}{b^2}-\frac{1}{c^2}\right)}\le\sqrt{3\left(3-\frac{3}{4}\right)}=\frac{3\sqrt{3}}{2}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=2

12 tháng 4 2020

Khó quáaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

NV
24 tháng 10 2020

Ta có:

\(VT=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{xy+yz+zx}{xy}+\frac{xy+yz+zx}{yz}+\frac{xy+yz+zx}{zx}\)

\(VT=3+\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{zx}\) (1)

Mặt khác:

\(\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}\ge2\sqrt{\frac{zx\left(x+y\right)\left(y+z\right)}{xy^2z}}=2\sqrt{\frac{\left(x+y\right)\left(y+z\right)}{y^2}}=\frac{2\sqrt{y^2+xy+yz+zx}}{y}=\frac{2\sqrt{y^2+1}}{y}\)

Tương tự: \(\frac{z\left(x+y\right)}{xy}+\frac{y\left(x+z\right)}{zx}\ge\frac{2\sqrt{x^2+1}}{x}\) ; \(\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{zx}\ge\frac{2\sqrt{z^2+1}}{z}\)

Cộng vế với vế:

\(\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{xz}\ge\frac{\sqrt{x^2+1}}{x}+\frac{\sqrt{y^2+1}}{y}+\frac{\sqrt{z^2+1}}{z}\) (2)

Từ (1) và (2) suy ra đpcm

Dấu "=" xảy ra khi \(x=y=z=...\)

26 tháng 5 2020

ai mà biết được???????????????

26 tháng 5 2020

Bn ko biết thì đừng có đăng linh tinh nhé hoktok 😋😋😋😋😋😋😋😋😋