Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DE ngắn nhất ⇔ AM ngắn nhất. Điều đó xảy ra khi AM là đường cao ΔABC.
a) Vì \widehat{AEM}=\widehat{AFM}={90}^\circAEM=AFM=90∘ nên A, E, M, F thuộc đường tròn tâm I đường kính AM \Rightarrow\ \widehat{EIF}=2\widehat{EAF}={120}^\circ⇒ EIF=2EAF=120∘ (góc ở tâm bằng hai lần góc nội tiếp chắn cung \stackrel\frown{EF}EF⌢).
b) Hạ IH\bot EFIH⊥EF, ta có IE=IF=\frac{1}{2}AMIE=IF=21AM nên \Delta IEFΔIEF cân \Rightarrow HE=HF⇒HE=HF.
Ta lại có: EH=EI.\sin{\widehat{EIH}}=\frac{1}{2}AM.\sin{{60}^\circ}EH=EI.sinEIH=21AM.sin60∘ (vì \widehat{EIH}=\widehat{FIH}=\frac{1}{2}\widehat{EIF}={60}^\circEIH=FIH=21EIF=60∘).
Suy ra EH=\frac{a}{2}.\frac{\sqrt3}{2}=\frac{a\sqrt3}{4}\Rightarrow EF=2EH=\frac{a\sqrt3}{2}EH=2a.23=4a3⇒EF=2EH=2a3.
c) EF nhỏ nhất khi AM nhỏ nhất \Leftrightarrow⇔ AM \bot⊥ BC.
A B C H M E F I
Bài làm:
Ta có: Vì ΔABC đều => \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
Xét Δ vuông MBE có BE = 1/2 BM
=> \(EM^2=BM^2-BE^2=BM^2-\frac{1}{4}BM^2=\frac{3}{4}BM^2\)
=> \(EM=\frac{BM\sqrt{3}}{2}\)
Tương tự CM được: \(FM=\frac{MC\sqrt{3}}{2}\)
=> \(ME+MF=\frac{\left(BM+MC\right)\sqrt{3}}{2}=\frac{BC.\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)
b) Ta có: Theo tính chất đường trung tuyến ứng với cạnh huyền
=> \(IE=FI=\frac{AM}{2}=AI\)
Vì IE = AI => Δ AIE cân tại I => \(\widehat{IAE}=\widehat{IEA}\)
=> \(\widehat{EIM}=\widehat{IAE}+\widehat{IEA}=2\widehat{IAE}\)
Tương tự CM được: \(\widehat{FIM}=2\widehat{FAI}\)
=> \(\widehat{EIM}+\widehat{FIM}=2\left(\widehat{IAE}+\widehat{FAI}\right)=2.60^0=120^0\)
=>\(\widehat{EIF}=120^0\)
c) Khi AM = 20cm => \(EI=FI=10cm\)
=> Δ EIF cân tại I => \(\widehat{FEI}=\widehat{IFE}=30^0\)
Xong từ I kẻ đường cao xuống EF làm 1 vài động tác CM ra được: \(EF=10\sqrt{3}cm\)
(ko hiểu thì ib)
d) Áp dụng t/c đường xiên hình chiếu => Min AM = AH khi M trùng H