Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha
áp dụng hệ thức lượng trong tam giác vuông ABCco \(AB^2=BA'^2\cdot BC,AC^2=A'C^2\cdot BC\)
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{BA'}{A'C}\Rightarrow\frac{AC^4}{AB^4}=\frac{A'C^2}{A'B^2}\) (1)
mà trong tam giác vuông AA'B có\(BA'^2=BF\cdot AB\)
trong tam giác vuông AA'C có \(A'C^2=EC\cdot AC\)
thay vào (1) ta co \(\frac{AC^4}{AB^4}=\frac{EC\cdot AC}{BF\cdot AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{EC}{BF}\left(DPCM\right)\)
b,de dang chung minh duoc tam giac BMD~BAC
SUY RA \(\frac{BD}{BC}=\frac{BM}{BA}=\frac{MD}{AC}\) (2)
tuong tu tam giac NDC~ABC
SUY RA \(\frac{DC}{BC}=\frac{NC}{AC}=\frac{ND}{AB}\)(3)
nhan (2) voi (3) ta co \(\frac{BD\cdot DC}{BC^2}=\frac{BM\cdot ND}{AB^2}=\frac{MD\cdot NC}{AC^2}=\frac{BM\cdot ND+MD\cdot NC}{AB^2+AC^2}\)
suy ra \(BD\cdot DC=BM\cdot ND+MD\cdot NC\)
de dang cm duoc tu giac AMDN la hcn suy ra MA =ND,MD=AN
THAY VAO BIEU THUC TREN TA CO \(BD\cdot DC=MA\cdot MB+NA\cdot NC\left(DPCM\right)\)
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
b: Xét ΔHAB vuông tại H có HM là đường cao
nên MA*MB=HM^2
ΔHAC vuông tại H có HN là đường cao
nên NA*NC=HN^2
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>AH=MN
=>MN^2=AH^2=HB*HC
=>HB*HC=MA*MB+NA*NC
Em kiểm tra lại đề bài, tam giác ABC cân tại A hay vuông tại A?
Vì nếu cân tại A thì BH=CH, nhưng đề lại cho BH=2, CH=8 vô lý
a/
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)
\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)
b/
Xét tg vuông AHB có
\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông AHC có
\(HC^2=CE.AC\) (lý do như trên)
\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)
Mà \(HB.HC=AH^2\) (cmt)
\(\Rightarrow CE.BD.AC.AB=AH^4\)
c/
\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE
\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD
=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN
Xét tg vuông ADH và tg vuông ADE có
HD = AE (cạnh đối HCN)
AD chung
=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)
\(\Rightarrow\widehat{AED}=\widehat{AHD}\)
\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) )
\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)
\(\widehat{C}+\widehat{B}=90^o\) (2)
\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\) (3)
Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC
Ta có
\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)
\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)
\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB
Mà IA= IC (cmt)
=> IB=IC => I là trung điểm của BC