K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

a) HS tự chứng minh

b) O nằm trên đường cao xuất phát từ đỉnh A của DABC

5 tháng 1 2018

b) Giả sử MNPQ là hình chữ nhật 

=> ^QMN=90do HAY QM vuong goc voi MN

Lai co MN//BC

=> BC vuong goc voi QM

    Ma QM //AO

=> AO vuong goc voi BC

=> O thuoc duong cao ke tu A den BC

Goi giao diem cua AO VA BC LA H 

Để SMNPQ=SABC

=> MQ.QP=(BC.AH)/2

Mà QP=BC/2

=> MQ=AH

Ma MQ=AH/2 

=> AH=AO/2

Mà AO hay AH vuong goc voi BC

=> BC la trung truc cua AO .

Vay de tu giac MNPQ vua la HCN vua co dien h =tam giac ABC thi BC phai la trung truc cua AO

5 tháng 1 2018

a,Do tia AO nằm giữa tia AB và tia AC(gt)

Gọi O là điểm nằm giữa đoạn thẳng BC

sao cho BO< OC

M,N,P,Q lần lượt là trung điểm của OB,OC,AC,AB (gt)

=>BM=MO;ON=NC;CP=PA;AQ=QB

Vậy ta có:PQ là đường trung bình của tam giác ABC nên PQ//=1/2 BC (1)

Tương tự:

PN là đường trung bình của tam giác ACO nên PN//=1/2 AO (2)

QM là đường trung bình của tam giác ABO nên QM//=1/2 AO (3)

Từ (2),(3) suy ra:

PN//=QM=1/2 OA ( t/c 2 đường thẳng//) (4)

Do đó PQ//=MN

=> Tứ giác MNPQ là hình bình hành

b,theo cmt : PN//=QM=1/2 OA 

Mặt khác, AO là cạnh đối diện của 2 góc B và góc C

Từ đó=>góc B=góc C

=> tam giác ABC cân tại A

=>O là trung điểm của BC

=>AO _|_BC nên góc AOB=góc AOC=90°

=> 3 điểm B,O,C thẳng hàng (vì BOC=180°=góc AOB+góc AOC)

M,N là trung điểm của OB và OC(gt)

nên B,M,O,N,C thẳng hàng.

=>QM_|_BC và PN_|_BC

Hay góc QMN=góc PNM=1 vuông (5)

Theo (1) PQ//BC

=>PQ_|_QM ; PQ_|_PN

Hay góc MQP=góc NPQ=1 vuông (6)

Từ (5),(6) suy ra:

Tứ giác MNPQ là hình chữ nhật (đpcm)

9 tháng 4 2020

Lỗi nên không vẽ được hình nha bạn !!! 

Bài giải 

Gọi E,F , R , S theo thứ tự là trung điểm của đường cao AH ,cạnh BC ,MQ ,NP.Gọi O là trung điểm của RS .Dùng bổ đề hình thang chứng minh B,R,E thẳng hàng ,C,S,E thẳng hàng ,E , O ,F thẳng hàng .Điểm O chuyển động trên đoạn thẳng EF, trừ E và F . 

14 tháng 4 2020

Cảm ơn bạn

12 tháng 11 2021

o giả thiết cho IJ không song song với CDvà chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.

Gọi K=IJ∩CDK=IJ∩CD.

Ta có : M là điểm chung thứ nhất của (ACD) và (IJM);

{K∈IJIJ⊂(MIJ)⇒K∈(MIJ){K∈IJIJ⊂(MIJ)⇒K∈(MIJ) và  {K∈CDCD⊂(ACD)⇒K∈(ACD){K∈CDCD⊂(ACD)⇒K∈(ACD)

Vậy (MIJ)∩(ACD)=MK(MIJ)∩(ACD)=MK

Quảng cáo

b) Với L=JN∩ABL=JN∩AB ta có:

{L∈JNJN⊂(MNJ)⇒L∈(MNJ){L∈JNJN⊂(MNJ)⇒L∈(MNJ)

{L∈ABAB⊂(ABC)⇒L∈(ABC){L∈ABAB⊂(ABC)⇒L∈(ABC)

Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)

Gọi P=JL∩AD,Q=PM∩ACP=JL∩AD,Q=PM∩AC

Ta có: 

{Q∈PMPM⊂(MNP)⇒Q∈(MNJ){Q∈PMPM⊂(MNP)⇒Q∈(MNJ)

Và {Q∈ACAC⊂(ABC)⇒Q∈(ABC){Q∈ACAC⊂(ABC)⇒Q∈(ABC)

Nên Q là điểm chung thứ hai của (MNJ) và (ABC)

Vậy LQ=(ABC)∩(MNJ)LQ=(ABC)∩(MNJ).

12 tháng 11 2021

ko hiểu nhưng thôi k vậy   >:(

18 tháng 10 2015

Để cho 3 cái đều có diện tích là \(\frac{1}{3}ABC\) thì :

Trước tiên ta nối AD. Ta được SABC=SADC=1/2 SABC

Để vẽ được BED bằng 1/3 SABC thì ta vẽ SBED\(\frac{1}{3}:\frac{1}{2}\left(S_{ABD}\right)=\frac{2}{3}S_{ABD}\) hay còn nói : BE=2/3 BA

Tương tự với tam giác GDC

Phần còn lại là tứ giác và cũng bằng 2 tam giác kia