Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEAC
BC=căn 30^2+40^2=50cm
AE=30*40/50=24cm
c: góc ADF=90 độ-góc ABD
góc AFD=góc BFE=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADF=góc AFD
=>AD=AF
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔEAC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEAC
EA=3*4/5=2,4cm
d: BF là phân giác
=>AF/AB=FE/EB
=>AF/3=FE/1,8
=>AF/5=FE/3
mà AF+FE=2,4
nên AF/5=FE/3=2,4/8=0,3
=>AF=1,5cm
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạg với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc ADE=90 độ-góc ABD
góc AED=góc BEH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADE=góc AED
=>AD=AE
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc DBC
góc ADE=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AED=góc ADE
=>AD=AE
tam giác abc có góc a = 90 độ
=> tam giác abc vuông a
=> ab2 + ac2 = bc2
=> 32 + 42 = bc2
=> bc= 5
câu a
tam giác abc và tam giác eac có
góc bac = góc aec (=90 độ)
chung góc c
=> tam giác abc đồng dạng tam giác eac (gg)
=> \(\dfrac{ae}{ab}=\dfrac{bc}{ac}\)
\(=>ae=\dfrac{bc.ab}{ac}\\ =>ae=\dfrac{5.3}{4}\\ =>ae=3,75\left(cm\right)\)
câu b
xét tam giác abd và tam giác ebf có
góc bad = góc bef =90 độ
góc abd = góc ebf (bf là phân giác góc b)
=> tam giác abd đồng dạng tam giác ebf
=> \(\dfrac{bd}{bf}=\dfrac{ad}{ef}\)
=> bd . ef = bf .ad
câu c
từ câu b
=> góc bfe = góc adb
mà góc bfe = góc afd (đổi đỉnh)
=> góc afd = góc adf
=> tam giác afd cân tại a
=> af = ad
câu d
tam giác abc có phân giác bd
=> \(=>\dfrac{ad}{cd}=\dfrac{ab}{bc}\\ =>\dfrac{ad}{ad+cd}=\dfrac{ab}{ab+bc}\\ =>\dfrac{ad}{ac}=\dfrac{ab}{ab+bc}\\ =>\dfrac{ad}{4}=\dfrac{3}{8}\\ =>ad=1,5\left(cm\right)\)
chúc may mắn
Ta có AB/AE = AC/AF
<=> 6/4=9/6=3/2
AEF và ABC chung góc A
=> AEF và ABC đồng dạng "cạnh góc cạnh "
b) BC =3x3/2=4,5cm
`a)` Ta có: `(AE)/(AB) = 4/6 = 2/3`
`(AF)/(AC) = 6/9 = 2/3`
`=> (AE)/(AB) = (AF)/(AC)`
Xét `ΔAEF` và `ΔABC` có:
`hat{A}` chung
`(AE)/(AB) = (AF)/(AC)`
`=> ΔAEF ∼ ΔABC (c - g - c) ` (đpcm)
`b) ` Theo `a) ΔAEF ∼ ΔABC `
`=> (EF)/(BC) = (AF)/(AC)`
`=> 3/(BC) = 2/3`
`=> BC = 3 : 2/3 = 9/2`
Vậy `BC = 9/2cm`
#muon roi ma sao con
a, Xét tam giác BEF và tam giác DEA ta có :
^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )
\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1)
Vậy tam giác BEF ~ tam giác DEA ( c.g.c )
b, Xét tam giác EGD và tam giác EAB ta có :
^GED = ^EAB ( đ.đ )
\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét ) (2)
Vậy tam giác EGD ~ tam giác EAB ( c.g.c )
\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )
c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 )
Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)
a, Xét tam giác AEB và tam giác AFC ta có
^AEB = ^AEC = 900
^A _ chung
Vậy tam giác AEB ~ tam giác AFC ( g.g )
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)