K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc B=góc C=(180-45)/2=67,5 độ

Vì góc A<góc B=góc C

nên BC<AB=AC

b: XetΔAHB vuông tại H và ΔAHC vuông tai H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

c: ΔABC cân tại A

mà AH là đường cao

nên AH là trung trực của BC

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}+60^0=90^0\)

hay \(\widehat{ACB}=30^0\)(1)

Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\left(30^0< 60^0< 90^0\right)\)

nên AB<AC<BC

b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có 

BD chung

\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))

Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)

c) Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)

nên \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DBC}=\widehat{DCB}\)

Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(cmt)

nên ΔDBC cân tại D(Định lí đảo của tam giác cân)

Xét ΔBDK vuông tại K và ΔCDK vuông tại K có 

DB=DC(ΔDBC cân tại D)

DK chung

Do đó: ΔBDK=ΔCDK(Cạnh huyền-cạnh góc vuông)

Suy ra: BK=CK(hai cạnh tương ứng)

hay K là trung điểm của BC(Đpcm)

31 tháng 3 2017

a) Góc b = góc c vì M được đặt ngay giữa đoạn thẳng BC và MB = MC nên hai góc này phải bằng nhau

b) Câu này tớ chỉ biết kết quả vì tớ nhìn vô hình là: AB > MC

31 tháng 3 2017

Bài này dễ mà bạn! Bạn vẽ hình ra như vầy: 

a: BC=15cm

Xét ΔABC có AC<AB<BC

nên \(\widehat{B}< \widehat{C}< \widehat{A}\)

b: Xét ΔEAD có 

EC là đường cao

EC là đường trung tuyến

DO đó: ΔEAD cân tại E

c: Xét ΔDAB có 

C là trung điểm của AD

CE//AB

Do đó: E là trung điểm của BD

a: góc C=90-65=25 độ

Vì góc C<góc B<A

nên AB<AC<BC

b: Xét ΔCDB có

DK,CA là trung tuyến

DK cắt CA tại M

=>M là trọng tâm

=>CM=2/3CA=10cm

a: BH<AB

CK<AC

=>BH+CK<AB+AC

b: BH<BD

CK<CD

=>BH+CD<BD+CD=BC

20 tháng 2 2021

image

Chúc bạn học tốt

a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có 

AB=AC(ΔABC cân tại A)

AM chung

Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)

Suy ra: MB=MC(hai cạnh tương ứng)

b) Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có 

MB=MC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)

Suy ra: DM=EM(hai cạnh tương ứng)

Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

11 tháng 3 2023

a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:

BM là cạnh chung

\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)

b) Do \(\Delta AMB=\Delta HMB\) (cmt)

\(\Rightarrow AM=HM\) (hai cạnh tương ứng)

c) \(\Delta MHC\) vuông tại H

\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất

\(\Rightarrow HM< MC\)

Lại có HM = AM (cmt)

\(\Rightarrow AM< MC\)