Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
=>góc HAB=góc HCA
=>góc HAB+góc HAC=90 độ
=>góc BAC=90 độ
Xét ΔABC có góc BAC=90 độ
nên ΔABC vuông tại A
ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=12,5cm
Xét ΔHAM vuông tại H có AM^2=AH^2+HM^2
=>HM^2=12,5^2-12^2=12,25
=>HM=3,5cm
Xét ΔAHM vuông tại H có tan HAM=HM/AM=3,5/12,5=7/25
\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)
nên \(\widehat{B}\simeq58^0\)
hay \(\widehat{C}=32^0\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
=>góc HAB=góc HCA
=>góc HAB+góc HAC=90 độ
=>góc BAC=90 độ
Xét ΔABC có góc BAC=90 độ
nên ΔABC vuông tại A
ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=12,5cm
Xét ΔHAM vuông tại H có AM^2=AH^2+HM^2
=>HM^2=12,5^2-12^2=12,25
=>HM=3,5cm
Xét ΔAHM vuông tại H có tan HAM=HM/AM=3,5/12,5=7/25