\(\sqrt{5}\), AC=3 và cotC=2. tính cạnh AB.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cot C=2

=>\(tanC=\dfrac{1}{cotC}=\dfrac{1}{2}\)

\(1+tan^2C=\dfrac{1}{cos^2C}\)

=>\(cos^2C=1+\dfrac{1}{4}=\dfrac{5}{4}\)

=>\(cosC=\dfrac{2}{\sqrt{5}}\) hoặc \(cosC=-\dfrac{2}{\sqrt{5}}\)

TH1: \(cosC=\dfrac{2}{\sqrt{5}}\)

=>\(\dfrac{BC^2+AC^2-AB^2}{2\cdot BC\cdot AB}=\dfrac{2}{\sqrt{5}}\)

=>\(\dfrac{5+9-AB^2}{6\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

=>\(14-AB^2=12\)

=>AB^2=2

=>\(AB=\sqrt{2}\)

TH2: \(cosC=-\dfrac{2}{\sqrt{5}}\)

=>\(\dfrac{5+9-AB^2}{6\sqrt{5}}=-\dfrac{2}{\sqrt{5}}\)

=>\(14-AB^2=\dfrac{-2}{\sqrt{5}}\cdot6\sqrt{5}=-12\)

=>AB^2=26

=>\(AB=\sqrt{26}\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

19 tháng 5 2017

a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).

30 tháng 3 2017

Ta có: BC2 = AC2 + AB2 - 2AB.AC. cos1200

=> BC2 = m2 + n2 - 2m.n ()

=> BC2 = m2 + n2 + m.n

=> BC =

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

2 tháng 4 2017

Điều kiện cần và đủ của tam giác ABC vuông tại A là các cạnh của nó thỏa mãn hệ thức :

a2 + b2 = c2

(a, b, c độ dài các cạnh theo thứ tự đối diện các đỉnh A, B, C)



19 tháng 5 2017

A B C a
a) \(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=a.a.cos60^o=a.a.\dfrac{1}{2}\)\(=\dfrac{a^2}{2}\).
\(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}==-a.a.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)\)\(=-a.a.cos60^o=-\dfrac{a^2}{2}\).

21 tháng 11 2018

\(\overrightarrow{AB}.\overrightarrow{AC}=\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=a.a.cos60=\dfrac{1}{2}a^2\)\(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}=-\left(\overrightarrow{BA}.\overrightarrow{BC}\right)=-\left(\left|\overrightarrow{BA}\right|.\left|\overrightarrow{BC}\right|.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)\right)=-\left(a.a.cos60\right)=-\dfrac{1}{2}a^2\)

19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác

16 tháng 2 2021

song ngư đẹp trai

16 tháng 2 2021

hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu

12 tháng 4 2017

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=75^o\)

* \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\Rightarrow AB=\dfrac{BCsinC}{sinA}=a\left(1+\sqrt{3}\right)\)

* \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BCsinB}{sinA}=a\left(\dfrac{-6+3\sqrt{2}}{2}\right)\)