K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

A B C a
a) \(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=a.a.cos60^o=a.a.\dfrac{1}{2}\)\(=\dfrac{a^2}{2}\).
\(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}==-a.a.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)\)\(=-a.a.cos60^o=-\dfrac{a^2}{2}\).

21 tháng 11 2018

\(\overrightarrow{AB}.\overrightarrow{AC}=\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=a.a.cos60=\dfrac{1}{2}a^2\)\(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}=-\left(\overrightarrow{BA}.\overrightarrow{BC}\right)=-\left(\left|\overrightarrow{BA}\right|.\left|\overrightarrow{BC}\right|.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)\right)=-\left(a.a.cos60\right)=-\dfrac{1}{2}a^2\)

25 tháng 9 2023

Tham khảo:

a)  \(\)\(\overrightarrow {BA}  + \overrightarrow {AC}  = \overrightarrow {BC}  \Rightarrow \left| {\overrightarrow {BC} } \right| = BC = a\)

b) Dựng hình bình hành ABDC, giao điểm của hai đường chéo là O ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD} \)

\(AD = 2AO = 2\sqrt {A{B^2} - B{O^2}}  = 2\sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = a\sqrt 3 \)

\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD = a\sqrt 3 \)

c) \(\overrightarrow {BA}  - \overrightarrow {BC}  = \overrightarrow {BA}  + \overrightarrow {CB}  = \overrightarrow {CB}  + \overrightarrow {BA}  = \overrightarrow {CA} \)

\( \Rightarrow \left| {\overrightarrow {BA}  - \overrightarrow {BC} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\)

15 tháng 12 2020

Có vẻ không đúng.

Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow M\equiv B\) (Vô lí)

15 tháng 12 2020

Đề đúng đó bạn ơi Hồng Phúc CTV

Đây là đề thi học kì năm ngoái của trường mình mà.

24 tháng 9 2023

Tham khảo:

\(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB}  \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} } \right| = CB = a.\)

Dựng hình bình hành ABDC tâm O như hình vẽ.

Ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Vì tứ giác ABDC là hình bình hành, lại có \(AB = AC = BD = CD = a\) nên ABDC là hình thoi.

\( \Rightarrow AD = 2AO = 2.AB.\sin B = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 .\)

Vậy \(\left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right| = a\) và \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

+) \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {ABC} = 60^\circ \)

+) Dựng hình bình hành ABCD, ta có: \(\overrightarrow {AD}  = \overrightarrow {BC} \)

\( \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD} = 120^\circ \)

+), Ta có: ABC là tam giác đều, H là trung điểm BC nên  \(AH \bot BC\)

\(\left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AH} ,\overrightarrow {AD} } \right) = \widehat {HAD} = 90^\circ \)

+) Hai vectơ \(\overrightarrow {BH} \) và \(\overrightarrow {BC} \)cùng hướng nên \(\left( {\overrightarrow {BH} ,\overrightarrow {BC} } \right) = 0^\circ \)

+) Hai vectơ \(\overrightarrow {HB} \) và \(\overrightarrow {BC} \)ngược hướng nên \(\left( {\overrightarrow {HB} ,\overrightarrow {BC} } \right) = 180^\circ \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

+) Ta có: \(AB \bot AC \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {AC}  \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = 0\)

+) \(\overrightarrow {AC} .\overrightarrow {BC}  = \left| {\overrightarrow {AC} } \right|.\left| {\overline {BC} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right)\)

Ta có: \(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt 2  \Leftrightarrow \sqrt {2A{C^2}}  = \sqrt 2 \)\( \Rightarrow AC = 1\)

\( \Rightarrow \overrightarrow {AC} .\overrightarrow {BC}  = 1.\sqrt 2 .\cos \left( {45^\circ } \right) = 1\)

+) \(\overrightarrow {BA} .\overrightarrow {BC}  = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|.\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = 1.\sqrt 2 .\cos \left( {45^\circ } \right) = 1\)

NV
3 tháng 12 2021

\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)

\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)

\(=0\)

23 tháng 12 2020

1.

Dựng \(\overrightarrow{DB'}=\overrightarrow{CB}\)

\(k\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DA}+\overrightarrow{AB}\)

\(=2\overrightarrow{AB}+\overrightarrow{B'D}+\overrightarrow{DA}\)

\(=2\overrightarrow{AB}+\overrightarrow{B'A}\)

\(=2\overrightarrow{AB}+2\overrightarrow{AB}=4\overrightarrow{AB}\)

\(\Rightarrow k=4\)

23 tháng 12 2020

Gọi M là trung điểm IB

\(\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\left|2\overrightarrow{AM}\right|=2AM\)

Ta có \(\overrightarrow{AM}^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2=MI^2+IA^2-2MI.IA.cos90^o=\dfrac{1}{16}a^2+\dfrac{3}{4}a^2=\dfrac{13}{16}a^2\)

\(\Rightarrow AM=\dfrac{\sqrt{13}}{4}a\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\dfrac{\sqrt{13}}{2}a\)

25 tháng 8 2021

Vì AH=(BC.1/2)tan60 ct lương giác

=BC.tan60.1/2=\(\sqrt{3}\)/2

họk tốt!

 

Chọn C