K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)

hay BC=8(cm)

Vậy: BC=8cm

9 tháng 6 2020

Câu 1.

Gọi DI là trung trực BC

Xét ΔBIDvà ΔCID:

IDchung

\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)

BD = CD(như trên)

⇒ΔBID = ΔCID (c.g.c )

\(\widehat{IBD}=\widehat{C}\)(2gtu)

\(\widehat{B}-\widehat{C}\) = 40

hay \(\widehat{B}-\widehat{IBD}\) = 40

\(\widehat{IBD}+\widehat{ABI}=B\)

\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)

7 tháng 2 2020

ib mình face mình đưa bài cho

7 tháng 2 2020

Sai đề ở chỗ m của bc kẻ đường vuông ai tại H chấm hết , bài này bạn ra ak ? 

13 tháng 11 2018

A B C M K

13 tháng 11 2018

a)

Áp dụng định lí tổng ba góc trong một tam giác bằng 180 độ

Xét trong tam giác ABC. Ta có:

\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\)

\(\widehat{ABC}+3.\widehat{ABC}+2.\widehat{ABC}=180^o\)

=> \(6.\widehat{ABC}=180^o\Rightarrow\widehat{ABC}=30^o\Rightarrow\widehat{BAC}=120^o\Rightarrow\widehat{ACB}=60^o\)

b) 

MK//CB => \(\widehat{MKB}=\widehat{CBA}\)(1)

AC//BM => \(\widehat{CBM}=\widehat{ACB}=60^o\Rightarrow\widehat{ABM}=\widehat{ABC}+\widehat{CBM}=30^o+60^o=90^o\)

=> \(AB\perp BM\)=> AB//CM => \(\widehat{MCB}=\widehat{CBA}\)(2)

=> \(\widehat{MCB}=\widehat{MKB}\)

b) Ta có : KB vuông góc với BM

lấy E đối xứng với M qua B

=> K B là đường trung trực của ME

Để chứng minh AE=AM

Xét hai tam giác ABM và ABE bằng nhau theo truowngf hợp c-g-c

a: BC=10cm

b: Xét ΔBAI vuông tại A và ΔBKI vuông tại K có

BI chung

\(\widehat{ABI}=\widehat{KBI}\)

Do đó: ΔBAI=ΔBKI

Suy ra: BA=BK

hay ΔBAK cân tại B

c: ta có: ΔBAI=ΔBKI

nên IA=IK

mà IK<IC

nên IA<IC

4 tháng 12 2016

Mình làm câu A thôi nha:

Xét tam giác ADB và tam giác ADC

Ta có:AB=AC (gt)

góc A1=A2 (gt)

AD là cạnh chung

=>tam giác ADB=tam giác ADC (cạnh-góc-cạnh)

hehehehehehe

18 tháng 12 2016

 

Xét AHD và AKD lần lượt vuông tại H,K có:

AD: cạnh chung

HAD = KAD ( vì AD là tia phân giác góc A)

Suy ra AHD=AKD(ch-gn)

Do đó AH=AK ( 2 cạnh tương ứng)