Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Vậy: BC=8cm
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
a)
Áp dụng định lí tổng ba góc trong một tam giác bằng 180 độ
Xét trong tam giác ABC. Ta có:
\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\)
\(\widehat{ABC}+3.\widehat{ABC}+2.\widehat{ABC}=180^o\)
=> \(6.\widehat{ABC}=180^o\Rightarrow\widehat{ABC}=30^o\Rightarrow\widehat{BAC}=120^o\Rightarrow\widehat{ACB}=60^o\)
b)
MK//CB => \(\widehat{MKB}=\widehat{CBA}\)(1)
AC//BM => \(\widehat{CBM}=\widehat{ACB}=60^o\Rightarrow\widehat{ABM}=\widehat{ABC}+\widehat{CBM}=30^o+60^o=90^o\)
=> \(AB\perp BM\)=> AB//CM => \(\widehat{MCB}=\widehat{CBA}\)(2)
=> \(\widehat{MCB}=\widehat{MKB}\)
b) Ta có : KB vuông góc với BM
lấy E đối xứng với M qua B
=> K B là đường trung trực của ME
Để chứng minh AE=AM
Xét hai tam giác ABM và ABE bằng nhau theo truowngf hợp c-g-c
a: BC=10cm
b: Xét ΔBAI vuông tại A và ΔBKI vuông tại K có
BI chung
\(\widehat{ABI}=\widehat{KBI}\)
Do đó: ΔBAI=ΔBKI
Suy ra: BA=BK
hay ΔBAK cân tại B
c: ta có: ΔBAI=ΔBKI
nên IA=IK
mà IK<IC
nên IA<IC
Mình làm câu A thôi nha:
Xét tam giác ADB và tam giác ADC
Ta có:AB=AC (gt)
góc A1=A2 (gt)
AD là cạnh chung
=>tam giác ADB=tam giác ADC (cạnh-góc-cạnh)
Xét AHD và AKD lần lượt vuông tại H,K có:
AD: cạnh chung
HAD = KAD ( vì AD là tia phân giác góc A)
Suy ra AHD=AKD(ch-gn)
Do đó AH=AK ( 2 cạnh tương ứng)