K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE; \(\widehat{BAD}=\widehat{CAE};\widehat{ADB}=\widehat{AEC}\)

Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE

\(\widehat{HDB}=\widehat{KEC}\)

Do đó: ΔHBD=ΔKCE

=>HB=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

Do đó: ΔAHB=ΔAKC

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)(hai góc đối đỉnh)

\(\widehat{OCB}=\widehat{KCE}\)(hai góc đối đỉnh)

mà \(\widehat{HBD}=\widehat{KCE}\)(ΔHBD=ΔKCE)

nên \(\widehat{OBC}=\widehat{OCB}\)

=>ΔOBC cân tại O

d: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

Ta có: \(\widehat{DAB}+\widehat{BAO}=\widehat{DAO}\)

\(\widehat{EAC}+\widehat{CAO}=\widehat{EAO}\)

mà \(\widehat{DAB}=\widehat{EAC};\widehat{BAO}=\widehat{CAO}\)

nên \(\widehat{DAO}=\widehat{EAO}\)

=>AO là phân giác của góc DAE

e: IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng

c: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó:ΔABD=ΔACE
Suy ra: \(\widehat{HDB}=\widehat{KEC}\)

Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE

\(\widehat{HDB}=\widehat{KEC}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO⊥BC

=>AO⊥DE
Ta có: ΔADE cân tại A

mà AO là đường cao

nên AO là tia phân giác của góc DAE

e: Ta có: IB=IC

nên I nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,O thẳng hàng

16 tháng 2 2022

kkkkkkkkkkkkkkkk

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

1 tháng 3 2020

A D B C E H K I

Vì tam giác ABC cân tại Asuy ra AB=AC, góc B=góc C

mà góc ABC + góc ABD = 1800, góc ACB +  góc ACE = 1800

suy ra góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE

có AB=AC (CMT); góc ABD = góc ACE; BD=CE (GT)

suy ra tam giác ABD =  tam giác ACE (c.g.c)    (*)

suy ra góc DAB=góc EAC (hai góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông ACK

có AB=AC (CMT), góc DAB=góc EAC (CMT)

suy ra tam giác  AHB = tam giác ACK ( cạnh huyền-góc nhọn)  (1)

b) Tư (1) suy ra AH=AK (hai cạnh tương ứng)  (2)

Xét tam giác vuông AHI và tam giác vuông AKI

có AI chung, AH=AK (CMT)

suy ra  tam giác  AHI = tam giác AKI (cạnh huyền-cạnh góc vuông)

suy ra góc HAI=góc KAI

suy ra AI là tia phân giác của góc DAE

c) Từ (2) suy ra tam giác AHK cân tại A

suy ra góc AHK = góc AKH  (3)

tam giác AHK có góc HAK + góc AHK + góc AKH=1800 (4)

 Từ (3) và (4) suy ra góc AHK = (1800- góc AHK ) :2   (5)

Từ (*) suy ra tam giác ADE cân tại A

suy ra góc ADE = góc AED  (6)

tam giác ADE có góc EAD + góc ADE + góc AÈD=1800 (7)

 Từ (6) và (7) suy ra góc ADE = (1800- góc DAE ) :2  (8)

Từ (5) và (8) suy ra góc ADE = góc AHK

mà góc ADE đồng vị với góc AHK

suy ra HK//DE

29 tháng 2 2020

Phần a là chứng minh 2 tam giác ABH = ACK à bạn ?

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

5 tháng 3 2016

xin lỗi em mới học lớp 5

5 tháng 3 2016

em mới học lớp 5

a: 

Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

b: 

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

c: góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE
nên góc OBC=góc OCB

=>ΔOBC cân tại O

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC