K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

A B C D E F O

a. Áp dụng định lý Pitago cho tam giác vuông ABC ta có: \(AC^2=BC^2-AC^2=10^2-6^2=64\)

Vậy \(AC=8cm\)

b. Do D nằm trên tia đối của tia AB nên \(\widehat{CAD}=90^O\) 

Xét tam giác ABC và tam giác ADC có:

\(\widehat{CAB} = \widehat{CAD}=90^O\)

AC chung

AB=AD(giả thiết)

\(\Rightarrow\Delta ABC=\Delta ADC\)(Hai cạnh góc vuông)

c. Xét tam giác DCB có :

A là trung điểm BD,

AE song song BC 

\(\Rightarrow\) AE là đường trung bình tam giác DBC., hay E là trung điểm DC. Vậy AE là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên EA=EC=ED. Vậy tma giác AEC cân tại E. ( Còn có thể có cách khác :) ) 

d. Xét tam giác DBC có CA là trung tuyến, lại có CA = 3OA nên O là trọng tâm tam giác DBC. Do F là trung điểm BC nên DF là đường trung tuyến. Vậy O  nằm trên DF hay O, D, F thẳng hàng.

Chúc em học tốt ^^

25 tháng 4 2016

a) 

Theo định lí py ta go trong tam giác  vuông ABC  có :

BC= AB+ AC

Suy ra : AC= BC- AB

AC2 =10- 6

AC = căn bậc 2 của 36 = 6 (cm )

b)

Xét tam giác ABC  và tam giác  ADC  có :

AC  cạnh chung

Góc A1 = góc A2  = 90 độ (gt )

AB = AD ( gt )

suy ra : tam giác ABC = tam giác ADC (  c- g -c )

14 tháng 3 2020

Bài này đáng lẽ phải là TRÊN TIA ĐỐI CA LẤY E SAO CHO BD=CE. Quên vẽ điểm F mà câu a) dễ nên tự thêm vô nha.

a) Ta có ^BFD = ^ACB ( DF // AC, đồng vị)

Mà ^ABC = ^ACB ( tam giác ABC cân tại A)

=> ^ABC = ^BFD 

Vậy tam giác FBD cân tại D (đpcm)

b) Kẻ \(DM\perp BC;EN\perp BC\)

Ta thấy ngay: \(\Delta BDM=\Delta CEN\left(ch-gn\right)\)

=> MD = NE (hai cạnh tương ứng)

=> \(\Delta DMI=\Delta ENI\left(g.c.g\right)\)

=> DI = EI hay I là trung điểm của DE (đpcm)

c) Ta có: AD + AE = AB - BD + AC + CE = AB + AC = 2AB (không đổi)

=> đpcm...

14 tháng 3 2020

Đề bị sai em kiểm tra lại đề đi! Chỗ trên AB lấy D , trên tia đối AC lấy E sao cho BD = CE ấy.

5 tháng 7 2017

A B C D E F

A B C D E

1 tháng 7 2018

â)xét tam giác AMBvà tam giác AMC

AB=AC( gt)

AM chung

MB=MC ( M là trung điểm của BC )

=> tam giác AMB= tam giác AMC ( c.c.c)

=> góc AMB= góc AMC ( 2 góc tương ứng )

mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )

=> góc AMB= góc AMC=90O

=> AM vuông góc với BC

b) xét tam giác ADF và tam giác ADE

DF=DE ( gt)

góc ADF= góc CDE ( 2 góc đối đỉnh )

AD=CD ( D là trung điểm của AC)

=> tam giác ADF = tam giác ADE ( c.g.c)

=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE

=.> AF// CE