Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)
b) Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang(Định nghĩa hình thang)
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MNCB là hthang
Mà \(\widehat{B}=\widehat{C}\) nên MNCB là htc
MN là đtb cm trên rồi
cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh : Tứ giác MNCB là hình thang cân.
b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?
c) Chứng minh : N là trọng tâm của tam giác CMD.
d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
a)Vì M là trung điểm của AB, N là trung điểm của AC=>MN là đường trung bình của tam ΔABC=>MN=1/2 BC mà BC = 10cm nên MN = 5cm
b)Vì MN là đường trung bình của tam ΔABC=>MN//BC=> Tứ giác BMNC là hình thang
c)Theo đề bài ta có ΔABC cân tại A => Góc B=C => Tứ giác BMNC là hình thang cân
b: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
Xét tứ giác MNCB có MN//BC
nên MNCB là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên MNCB là hình thang cân