K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:AD+DB=AB

AE+EC=AC

mà AD=AE: AB=AC
nên DB=EC

b: Xet ΔDBC và ΔECB có

DB=EC
góc DBC=góc ECB

BC chung

=>ΔDBC=ΔECB 

c: Xét ΔOCB  có góc OCB=góc OBC

nên ΔOBC cân tại O

16 tháng 4 2015

Xét tg: EAB và tg DAC có : 

AE = AD ( gt) 

^A chung 

AB = AC ( gt) 

=> tg EAB = tg DAC ( c.g.c)   => BE = CD; ^ABE = ^ACD ( cặp cạnh, góc tương ứng = nhau) 

c) Xét tg BDC và tg CEB có: 

BC chung 

^DBC = ^ECB (gt) 

BD =CE 

=> tg BDC = tg ECB ( c.g.c)   => ^BDC = ^CEB ( cặp góc tuong úng )

xét tg BDK và tg CEK có 

^DBE = ^ ECD (cmt) 

BD = CE 

^BDC = ^CEB (cmt) 

=> tg BDK = tg CEK ( g.c.g)    => BK = CK  => tg BKC cân tại K.

8 tháng 12 2016

TRẢ LỜI HỘ MIK CÁI

23 tháng 7 2017

dễ thế mà

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

5 tháng 4 2022

a, Ta có : \(AD=AE\left(gt\right)\)

→ ΔADE là tam giác cân ở A

\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)

Mà ΔABC cũng là tam giác cân 

\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)

\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)

mà  2 góc này ở vị trí so le  trong

\(\Rightarrow DE//BC\)

b, Xét ΔABE và ΔACD có :

\(AB=AC\left(\Delta ABC\cdot cân\right)\)

\(\widehat{A}:chung\)

\(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)

c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.

Mà ΔABC cân ở A

→ AK là đường trung tuyến của tam giác ABC

→ AI cũng là đường trung tuyến của tam giác ABC

28 tháng 2 2018

a) Xét tam giác ADB và AEC có:

AD = AE (gt)

AB = AC (gt)

Góc A chung

\(\Rightarrow\Delta ADB=\Delta AEC\left(c-g-c\right)\Rightarrow BD=CE\)

b) Do AB = AC; AD = AE nên BE = DC

Xét tam giác CEB và BDC có:

CE = BD (cma)

Cạnh BC chung

BC = CD (cmt)

\(\Rightarrow\Delta CEB=\Delta BDC\left(c-c-c\right)\)

c) Do \(\Delta ADB=\Delta AEC\Rightarrow\widehat{EBI}=\widehat{DCI}\)

Do \(\Delta CEB=\Delta BDC\Rightarrow\widehat{BEI}=\widehat{CDI}\)

Xét tam giác BIE và tam giác CID có:

\(\widehat{EBI}=\widehat{DCI}\)

\(\widehat{BEI}=\widehat{CDI}\)

BE = CD

\(\Rightarrow\Delta BIE=\Delta CID\left(g-c-g\right)\)

d) Do \(\Delta BIE=\Delta CID\Rightarrow IB=IC\)

Lại có AB = AC nên IA là trung trực của BC

Vậy IA đi qua trung điểm F của BC hay A, I, F thẳng hàng.

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath

3 tháng 11 2019

câu trả lời là gì