K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 8

Lời giải:

$K$ là giao điểm của 2 đường trung tuyến $BM,CN$

$\Rightarrow K$ là trọng tâm tam giác $ABC$

$\Rightarrow KB=\frac{2}{3}BM$

$\Rightarrow 3KB=2BM$

$\Rightarrow 3KB=2(KB+KM)$

$\Rightarrow KB=2KM\Rightarrow KM=\frac{1}{2}KB$

26 tháng 4 2018

a) Ta có: ΔABC cân tại A

Nên: AB=AC

Mà: CN là đường trung tuyến => NB=NA

       BM là đường trung tuyến => MA=MC

Suy ra: NB=NA=MA=MC

Xét ΔBNC và ΔCMB

Có: BN=CM (cmt)

      \(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)

      BC chung

Suy ra: ΔBNC=ΔCMB (c-g-c)

Xét ΔABM và ΔACN có

AB=AC
góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Mình xin phép sửa đề:

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN

`------`

\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)

\(\text{CM | BM = CN}\)

\(\text{BM là đường trung tuyến}\)

`->`\(\text{MA = MC (1)}\)

\(\text{CN là đường trung tuyến}\)

`->`\(\text{NA = NB (2)}\)

`\Delta ABC` cân tại A

`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

`->`\(\text{NA = NB = MA = MC}\)

Xét `\Delta ABM` và `\Delta ACN`:

\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)

`=> \Delta ABM = \Delta ACN (c-g-c)`

`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

loading...

a: Xét ΔBNC và ΔCMB có 

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó; ΔBNC=ΔCMB

b: Sửa đề: Cm ΔANM cân tại A

Xét ΔANM có AN=AM

nên ΔANM cân tại A

Xét ΔABC có

BM,CN lần lượt là các đường trung tuyến

BM cắt CN tại I

=>I là trọng tâm

=>AI là đường trung tuyến của ΔACB

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI vuông góc CB

=>AI là trung trực của BC

8 tháng 4 2016

A B C M N K

a. Ta xét \(\Delta BCNvà\Delta CMB\)

có BC chung

góc B = góc C ( Hai góc ở đáy của tam giác cân)

BN = CM ( BN=\(\frac{1}{2}AB=\frac{1}{2}AC=CM\)

Suy ra tam giác BCN = tam giác CMB ( C-G-C)

b. Ta có tam giác BCN = tam giác CMB

suy ra góc BCN = góc CBM ( hai góc tương ứng)

tam giác BKC có góc KBC= góc KCB nên tam giác BKC cân tại K

c. Xét \(\Delta BKC\)

có BC< KB + KC ( BĐT tam giác) (1)

mà BK = 2.KM, CK = 2.KN mà BK= CK, KM =KN (2)

từ (1) và (2) suy ra BC < KB +KC =4.KM

Vậy BC < 4.KM

13 tháng 7 2017

viết giả thiết kết luận kiểu vay m.n

17 tháng 9 2023

a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.

Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.

Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.

b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BM và CN nên G là trọng tâm tam giác ABC. Do đó:

\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.

Vậy tam giác GBC cân tại G. 

16 tháng 6 2020

C) MN // BC

o l m . v n

a, tam giác ABC cân tại A (gt)

=> AB = AC (Đn)

có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)

=> AN = AM = BN = CM 

xét tam giác NBC và tam giác MCB có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (Gt)

=> tam giác NBC = tam giác MCB (c-g-c)                 (1)

b, (1) => ^KBC = ^KCB (đn)

=> tam giác KBC cân tại K (dh)

c, có tam giác ABC cân tại A (gt)  => ^ABC = (180 - ^BAC) : 2 (tc)

có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)

=> ^ABC = ^ANM mà 2 góc này đồng vị

=> MN // BC (đl)

20 tháng 2

phải là 1/2 AB