
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(2^n+2^{n+1}=12\)
\(2^n\left(1+2\right)=12\)
\(2^n=4\)
\(2^n=2^2\)
\(\Rightarrow n=2\)

a) ta có : \(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-1\)
\(\Rightarrow2\left(A+1\right)=2\left(2^{2018}-1+1\right)=2\left(2^{2018}\right)=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)
b) ta có : \(A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-2\)
\(\Rightarrow2A+4=2\left(2^{2018}-2\right)+4=2^{2019}-4+4=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)

\(a,2^{n-1}+3^3=5^2+2.5\)
\(\Rightarrow2^{n-1}+27=25+10\)
\(\Rightarrow2^{n-1}=8\)
\(\Rightarrow2^{n-1}=2^3\)
\(\Rightarrow n-1=3\Rightarrow n=4\)
\(b,3^{n+1}-2=3^2+5^2-3\left(2^2-1\right)\)
\(\Rightarrow3^{n+1}-2=9+25-3\left(4-1\right)\)
\(\Rightarrow3^{n+1}=9+25-12+3+2\)
\(\Rightarrow3^{n+1}=27\)
\(\Rightarrow3^{n+1}=3^3\)
\(\Rightarrow n+1=3\Rightarrow n=2\)

2^n-1=512
2^9=512 -> n-1=9 -> n = 10
5^n(1+25)=650
5^n = 25
n=2
2^n(8+1)=144
2^n=16 -> n = 4

1) \(32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
Vì \(5< n< 7\)
Nên \(n=6\)
Vậy \(32< 2^6< 128\)
2) \(2.16\ge2^n>4\)
\(\Rightarrow2^5\ge2^n>2^2\)
Vì \(5\ge n>4\)
nên \(n=5\)
Vậy \(2.16\ge2^5>4\)
3/ Tương tự
P/S: chỉ cần đổi các số ra lũy thừa là sẽ tính được!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Kết bạn với mình nha!


a) 32 < 2n > 128
<=> 25 < 2n > 27
<=> n = 8 ; 9 ; 10...
b) 2 . 16 < 2n > 4
<=> 21 . 24 < 2n > 4
<=> 25 < 2n > 4
<=> n = 5 ; 6 ; 7 ;...
c) ( 22 : 4 ) . 2n = 4
<=> 1 . 2n = 4
<=> 2n = 4
<=> 2n = 22
<=> n = 2
(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2=n^2+(-2^2)+n^2+(-1)^2+n^2+n^2+1^2+n^2+2^2
=5.n^2+10=5.n^2+5.2=5.(n^2+2)
=>Đpcm