Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: =>a^3+b^3+c^3>=3abc
=>(a+b)^3+c^3-3ab(a+b)-3abc>=0
=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)>=0
=>a^2+b^2+c^2-ab-bc-ac>=0
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(a-c)^2+(b-c)^2>=0(luôn đúng)
Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)
Thiết lập tương tự và thu lại ta có :
\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)
Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)
Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)
Thiết lập tương tự và thu lại ta có :
\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)
Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)
\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=1\)
1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)
BĐT 1 sai ngay với \(a=\sqrt{0,1},b=\sqrt{0,2},c=\sqrt{2,7}\)
BĐT 2 tương đương với đi chứng minh \(a^4b^4+b^4c^4+c^4a^4\geq 3a^2b^2c^2\)
Áp dụng BĐT AM-GM: \(a^4b^4+b^4c^4\geq 2a^2b^4c^2\)
Tương tự \(b^4c^4+c^4a^4\geq 2b^2c^4a^2,a^4b^4+c^4a^4\geq 2a^4b^2c^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)
Do đó ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$
thì ra cái đầu sai nghĩ mãi ko ra, đại ca thông minh thật :v
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
\((a^2+2c^2)(1+2)\geq (a+2c)^2\)
\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)
\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)
Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)
Cộng theo vế các BĐT trên thu được:
\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=3$
Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.
Áp dụng BĐT AM-GM ta có:
\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)
\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)
\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)
Cộng theo vế:
\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)
\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)
Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)
Do a , b ,c đối xứng , giả sử a \(\ge b\ge c\Rightarrow\left\{{}\begin{matrix}a^2\ge b^2\ge c^2\\\dfrac{a}{b+c}\ge\dfrac{b}{a+c}\ge\dfrac{c}{a+b}\end{matrix}\right.\)
Áp dụng BĐT Trê - bư -sép ta có :
\(a^2.\dfrac{a}{b+c}+b^2.\dfrac{b}{a+c}+c^2.\dfrac{c}{a+b}\ge\dfrac{a^2+b^2+c^2}{3}.\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=\dfrac{1}{3}.\dfrac{3}{2}=\dfrac{1}{2}\)Vậy \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\) Dấu bằng xảy ra khi a = b =c = \(\dfrac{1}{\sqrt{3}}\)
Lời giải:
Áp dụng BĐT Cauchy cho $3$ số:
\(\left\{\begin{matrix} \frac{1}{a^3}+1+1\geq \frac{3}{a}\\ \frac{a^3}{b^3}+1+1\geq \frac{3a}{b}\\ b^3+1+1\geq 3b\end{matrix}\right.\Rightarrow \text{VT}\geq 3\text{VP}-6\)
Cũng áp dụng Cauchy:
\(\frac{1}{a}+\frac{a}{b}+b\geq 3\sqrt[3]{\frac{ab}{ab}}=3\Leftrightarrow \text{VP}\geq 3\)
\(\Rightarrow \text{VT}\geq 3\text{VP}-6\geq \text{VP}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=1\)
`-3x^2+8xy+3y^2=0`
`<=>3x^2-8xy-3y^2=0`
`<=>3x^2-9xy+xy-3y^2=0`
`<=>3x(x-3y)+y(x-3y)=0`
`<=>(x-3y)(3x+y)=0`
`<=>` $\left[ \begin{array}{l}x=3y\\3x=-y\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3y\\x=-\dfrac{y}{3}\end{array} \right.$
Đây mới là bài giải đúng nha nãy mình ghi nhầm =="
Bạn ghi sai kết quả mà lại còn từ x,y lại sang a,b?
`-3x^2+8xy+3y^2=0`
`<=>3x^2-8xy+3y^2=0`
`<=>3x^2-9xy-xy+3y^2=0`
`<=>3x(x-3y)-y(x-3y)=0`
`<=>(x-3y)(3x-y)=0`
`<=>` $\left[ \begin{array}{l}x=3y\\3x=y\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3y\\x=\dfrac{y}{3}\end{array} \right.$