\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\) Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR: 1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\) 2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+...
Đọc tiếp

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

4
AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

30 tháng 12 2022

3: =>a^3+b^3+c^3>=3abc

=>(a+b)^3+c^3-3ab(a+b)-3abc>=0

=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)>=0

=>a^2+b^2+c^2-ab-bc-ac>=0

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(a-c)^2+(b-c)^2>=0(luôn đúng)

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR 2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\) Giải: Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy...
Đọc tiếp

Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR

2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)

Giải:

Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:

\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),

\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),

\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)

Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)

=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)

\(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)

Áp dụng bđt Chebyshev có:

\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)

Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)

Vì vậy bđt đã cho ban đầu cũng đúng.

@Ace Legona

2
2 tháng 8 2017

Nice proof, nhưng đã quy đồng là phải thế này :v

\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)

\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)

2 tháng 8 2017

Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:

\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)

Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)

Áp dụng BĐT này ta có:

\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)

9 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\dfrac{1}{\sqrt{a}}+\dfrac{3}{\sqrt{b}}+\dfrac{8}{\sqrt{3c+2a}}\)

\(=\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{2}{\sqrt{b}}+\dfrac{8}{\sqrt{3c+2a}}\)

\(\ge\dfrac{4}{\sqrt{a}+\sqrt{b}}+\dfrac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\dfrac{4}{\sqrt{a}+\sqrt{b}}+\dfrac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\dfrac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\dfrac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\dfrac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\dfrac{64}{\sqrt{24\left(a+c+b\right)}}=\dfrac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)

11 tháng 5 2018

sao lại bạn lại nghĩ ra cách tách như vậy?

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Lời giải:

Áp dụng BĐT Cauchy cho $3$ số:

\(\left\{\begin{matrix} \frac{1}{a^3}+1+1\geq \frac{3}{a}\\ \frac{a^3}{b^3}+1+1\geq \frac{3a}{b}\\ b^3+1+1\geq 3b\end{matrix}\right.\Rightarrow \text{VT}\geq 3\text{VP}-6\)

Cũng áp dụng Cauchy:

\(\frac{1}{a}+\frac{a}{b}+b\geq 3\sqrt[3]{\frac{ab}{ab}}=3\Leftrightarrow \text{VP}\geq 3\)

\(\Rightarrow \text{VT}\geq 3\text{VP}-6\geq \text{VP}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=1\)

25 tháng 3 2017

cảm ơn ạ

13 tháng 1 2019

3.

\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

áp dụng bất đẳng thức cosi

+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)

......

tương tự với 2 cái sau