Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)
\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\Leftrightarrow\sqrt{\dfrac{97}{4}}P=\sqrt{4+\dfrac{81}{4}}\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\ge\left(2a+\dfrac{9}{2a}\right)+\left(2b+\dfrac{9}{2b}\right)+\left(2c+\dfrac{9}{2c}\right)\)
\(=2\left(a+b+c\right)+\dfrac{9}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\ge4+\dfrac{9}{2}.\dfrac{9}{a+b+c}=4+\dfrac{81}{4}=\dfrac{97}{4}\)
\(\Rightarrow P\ge\sqrt{\dfrac{97}{4}}\)
PS: Lần sau chép đề cẩn thận nhé bạn.
Ta luôn có \(\left(\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{b}}\right)^2\ge0\forall a;b\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\)
\(\Leftrightarrow2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{2}{\sqrt{ab}}+\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Leftrightarrow\dfrac{2\left(a+b\right)}{ab}\ge\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)^2\)
\(\Leftrightarrow\sqrt{\dfrac{2\left(a+b\right)}{ab}}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(\sqrt{2}\left(\sqrt{\dfrac{a+b}{ab}}+\sqrt{\dfrac{b+c}{bc}}+\sqrt{\dfrac{a+c}{ac}}\right)\ge2\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\right)\)
\(\Leftrightarrow\sqrt{\dfrac{a+b}{ab}}+\sqrt{\dfrac{b+c}{bc}}+\sqrt{\dfrac{a+c}{ac}}\ge\sqrt{\dfrac{2}{a}}+\sqrt{\dfrac{2}{b}}+\sqrt{\dfrac{2}{c}}\)
\("="\Leftrightarrow a=b=c\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\dfrac{1}{\sqrt{a}}+\dfrac{3}{\sqrt{b}}+\dfrac{8}{\sqrt{3c+2a}}\)
\(=\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{2}{\sqrt{b}}+\dfrac{8}{\sqrt{3c+2a}}\)
\(\ge\dfrac{4}{\sqrt{a}+\sqrt{b}}+\dfrac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(=\dfrac{4}{\sqrt{a}+\sqrt{b}}+\dfrac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\dfrac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(\ge\dfrac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)
\(\ge\dfrac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)
\(=\dfrac{64}{\sqrt{24\left(a+c+b\right)}}=\dfrac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)
a) Áp dụng bất đẳng thức Cauchy Shwarz dạng Engel, ta có:
\(A=\dfrac{x^2}{x-1}+\dfrac{y^2}{y-1}\)
\(\ge\dfrac{\left(x+y\right)^2}{x+y-2}\)
Đặt \(x+y=a\left(a>0\right)\)
\(\Rightarrow A\ge\dfrac{a^2}{a-2}\)
\(=\dfrac{8\left(a-2\right)+\left(a^2-8a+16\right)}{a-2}\)
\(=8+\dfrac{\left(a-4\right)^2}{a-2}\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
b) Áp dụng bất đẳng thức Cauchy Shwarz dạng Engel, ta có:
\(A=\dfrac{x}{\sqrt{y}-1}+\dfrac{y}{\sqrt{z}-1}+\dfrac{z}{\sqrt{x}-1}\)
\(\ge\dfrac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}-3}\)
Đặt \(\sqrt{x}+\sqrt{y}+\sqrt{z}=a\left(a>0\right)\)
\(\Rightarrow A\ge\dfrac{a^2}{a-3}\)
\(=\dfrac{12\left(a-3\right)+\left(a^2-12a+36\right)}{a-3}\)
\(=12+\dfrac{\left(a-6\right)^2}{a-3}\ge12\)
Dấu "=" xảy ra khi x = y = z = 2
Từ giả thiết \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\Rightarrow xy+yz+xz=1\left(x=\dfrac{1}{a};y=\dfrac{1}{b};z=\dfrac{1}{c}\right)\)
\(A=\sum\dfrac{1}{\sqrt{1+a^2}}=\sum\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{a^2}+1}}=\sum\dfrac{x}{\sqrt{x^2+1}}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\sum\dfrac{x}{x+y}+\dfrac{x}{x+z}=\dfrac{3}{2}\)
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
Bài 1:
Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)
Áp dụng bđt Cauchy Schwarz có:
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)
Lại sử dụng bđt Cauchy schwarz ta có:
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)
=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)
hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bđt Cosi ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân các vế của 3 bđt trên ta đc:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
=> Đpcm