Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B.
Ta có cường độ điện trường tại M bằng 0 nên
M nằm trên đoạn thẳng nối A, B => q 1 ; q 2 cùng dấu nhau
+ - A B C q1 q2 E1 E2 E
Nhận xét: Do \(AB^2=AC^2+BC^2\) nên tam giác ABC vuông tại C.
Điện trường tổng hợp tại C là: \(\vec{E}=\vec{E_1}+\vec{E_2}\)
Suy ra độ lớn: \(E=\sqrt{E_1^2+E_2^2}\) (*) (do \(\vec{E_1}\) vuông góc với \(\vec{E_2}\) )
\(E_1=9.10^9.\dfrac{16.10^{-8}}{0,04^2}=9.10^5(V/m)\)
\(E_1=9.10^9.\dfrac{9.10^{-8}}{0,03^2}=9.10^5(V/m)\)
Thay vào (*) ta được \(E=9\sqrt2.10^5(V/m)\)
a.Vì q1 > 0 mà chúng đẩy nhau nên q2 > 0
F= \(\frac{k.\left|q_1q_2\right|}{r^2}\)
\(\Rightarrow\left|q_2\right|=\frac{F.r^2}{\left|q_1\right|}=\frac{6,75.10^{-5}.0,02^2}{\left|4.10^{-8}\right|}=0,675\left(C\right)\)
=>q2 =0,675 C
b)
b) \(E_{q_1}=\frac{k.\left|q_1\right|}{BH^2}=\frac{9.10^9.\left|4.10^{-8}\right|}{0,01^2}=3,6.10^6\frac{V}{m}\)
\(E_{q_2}=\frac{k.\left|q_2\right|}{AH^2}=\frac{9.10^9.\left|0,675\right|}{0,01^2}=6,075.10^{13}\frac{V}{m}\)
Vì vecto E1 ↑↑ vecto E2=>E=|E1-E2|=6,075.1013 V/m
\(E_{q_3}=\frac{k.\left|q_3\right|}{AH^2}=\frac{9.10^9.\left|-2.10^{-8}\right|}{\left(0,02.\sin45^o\right)^2}=621,5.10^3\frac{V}{m}\)
Vì vecto E vuông góc với Eq3 nên:
EH =\(\sqrt{E_{q_3}^2+E^2}=6,075.10^{13}\left(\frac{V}{m}\right)\)
Chọn đáp án B
Ta có cường độ điện trường tại M bằng 0 nên