\(\times\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

+ - A B C q1 q2 E1 E2 E

Nhận xét: Do \(AB^2=AC^2+BC^2\) nên tam giác ABC vuông tại C.

Điện trường tổng hợp tại C là: \(\vec{E}=\vec{E_1}+\vec{E_2}\)

Suy ra độ lớn: \(E=\sqrt{E_1^2+E_2^2}\)   (*) (do \(\vec{E_1}\) vuông góc với \(\vec{E_2}\) )

\(E_1=9.10^9.\dfrac{16.10^{-8}}{0,04^2}=9.10^5(V/m)\)

\(E_1=9.10^9.\dfrac{9.10^{-8}}{0,03^2}=9.10^5(V/m)\)

Thay vào (*) ta được \(E=9\sqrt2.10^5(V/m)\)

31 tháng 8 2016

thank you so much

20 tháng 4 2017

13. Hai điện tích điểm A và B cách nhau 5cm trong chân không có hai điện tích q1 = +16.10-8 C và q2 = - 9.10-8 C. Tính cường độ điện trường tổng hợp và vẽ vectơ cường độ điện trường tại điểm C nằm cách A một khoảng 4cm và cách B một khoảng 3cm.

Hướng dẫn giải.

Đặt AC = r1 và BC = r2 . Gọi −→E1E1→−→E2E2→ lần lượt là cường độ điện trường do q1 và q2 gây ra ở C (Hình 3.4).

E1=k.q1εr21E1=k.q1εr12= 9.105 V/m (Hướng theo phương AC).

E1=k.q2εr22E1=k.q2εr22 = 9.105 V/m (Hướng theo phương CB).

Vì tam giác ABC là tam giác vuông nên hai vectơ −→E1E1→−→E2E2→ vuông góc với nhau.

Gọi −→ECEC→ là vectơ cường độ điện trường tổng hợp :

−→ECEC→ = −→E1E1→ + −→E2E2→ => EC=√2E1=12,7.105EC=2E1=12,7.105 V/m.

Vectơ −→ECEC→ làm với các phương AC và BC những góc 450 và có chiều như hình vẽ.

22 tháng 9 2016

a.Vì q> 0 mà chúng đẩy nhau nên q2 > 0 

F= \(\frac{k.\left|q_1q_2\right|}{r^2}\)

\(\Rightarrow\left|q_2\right|=\frac{F.r^2}{\left|q_1\right|}=\frac{6,75.10^{-5}.0,02^2}{\left|4.10^{-8}\right|}=0,675\left(C\right)\)

=>q=0,675 C

b) 

23 tháng 9 2016

b) \(E_{q_1}=\frac{k.\left|q_1\right|}{BH^2}=\frac{9.10^9.\left|4.10^{-8}\right|}{0,01^2}=3,6.10^6\frac{V}{m}\)

\(E_{q_2}=\frac{k.\left|q_2\right|}{AH^2}=\frac{9.10^9.\left|0,675\right|}{0,01^2}=6,075.10^{13}\frac{V}{m}\)

Vì vecto E↑↑ vecto E2=>E=|E1-E2|=6,075.1013 V/m 

\(E_{q_3}=\frac{k.\left|q_3\right|}{AH^2}=\frac{9.10^9.\left|-2.10^{-8}\right|}{\left(0,02.\sin45^o\right)^2}=621,5.10^3\frac{V}{m}\)

Vì vecto E vuông góc với Eq3 nên:

E=\(\sqrt{E_{q_3}^2+E^2}=6,075.10^{13}\left(\frac{V}{m}\right)\)