Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{3}+\dfrac{5x-2}{2}=0\\ \Leftrightarrow2\left(x-1\right)+3\left(5x-2\right)=0\\ \Leftrightarrow2x-2+15x-6=0\\ \Leftrightarrow17x-8=0\\ \Leftrightarrow17x=8\\ \Leftrightarrow x=\dfrac{8}{17}\)
Vậy....................
1.a/(x²+2x+1)(x+1)
=(x+1)(x²+2x+1)
=x(x²+2x+1)+1(x²+2x+1)
=x³+2x²+x+x²+2x+1
=x³+3x²+3x+1
c/(x-5)(x³-2x²+x-1)
=x(x³-2x²+x-1)-5(x³-2x²+x-1)
=x⁴-2x³+x²-1-5x³+10x²-5x+5
=x⁴-7x³+11x²+4-5x
=x⁴-7x³+11x²-5x+4
3.
Giá trị của x và y | Giá trị của biểu thức(x+y) (x²-Xy+y²) |
x=-10,y =2 | -1008 |
x=-1,y=0 | -1 |
x=2,y=-1 | 7 |
x=-0,5;y=1,25 | -2,08125 |
4).
(x-5)(3x+3)-3x(x-3)+3x+7
= 3x2+3x-15x-15-3x2+9x+3x+7
=(3x2-3x2)+(3x-15x+9x+3x)-15+7
=0 + 0 -8= -8
Vậy biểu thức được chứng minh
5). Sai đề rồi bn ơi!
1a,(1-x)(x+2)=0
=>1-x=0=>x=1
=>x+2=0=>x=-2
1b,(2x-2)(6+3x)(3x+2)=0
=>2x-2=0=>2(x-1)=0=>x=1
=>6+3x=0=>3x=-6=>x=-2
=>3x+2=0=>3x=-2=>x=-2/3
1c,(5x-5)(3x+2)(8x+4)(x^2-5)=0
=>5x-5=0=>5(x-1)=0=>x=1
=>3x+2=0=>x=-2/3
=>8x+4=0=>4(2x+1)=0=>2x+1=0=>2x=-1=>x=-1/2
=>x^2-5=0=>x^2=5=>x=\(+-\sqrt{5}\)
x=0
x=.................
x=-2, x=2/3
nối 2 cái xong còn cái nào bạn nối nốt nha
mình ko mang giấy bút nên ko vt đc
\(\frac{x+2}{x-3}-\frac{3}{x-3}=\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)-3x}{x\left(x-3\right)}=\frac{x-3}{x\cdot\left(x-3\right)}\)
\(\Leftrightarrow x^2+2x-3x-x+3=0\)
\(\Leftrightarrow x^2-2x+3=0\)
\(\Delta=\left(-2\right)^2-4.3=-8< 0\)
Vậy phương trình vô nghiệm.
\(\frac{x+2}{x-3}-\frac{3}{x-3}=\frac{1}{x}\)
\(\Leftrightarrow\frac{\left(x+2\right)x}{\left(x-3\right)x}-\frac{3x}{\left(x-3\right).x}=\frac{\left(x-3\right)}{\left(x-3\right).x}\)
\(\Rightarrow x^2+2x-3x=x-3\)
\(\Leftrightarrow x^2-x-x-3=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow\left(x^2+x\right)-\left(3x+3\right)=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
1.
\(\dfrac{3}{5}=\dfrac{21}{35}\)
\(\dfrac{-7}{9}=\dfrac{-42}{54}\)
\(\dfrac{32}{48}=\dfrac{4}{6}\)
\(\dfrac{-36}{60}=\dfrac{-6}{10}\)
2.
\(\dfrac{26x}{13x^2}\) :NTC 13x
\(\dfrac{bc}{5b^2c^2}\) :NTC bc
\(\dfrac{ax^2}{2a^2x}\) :NTC ax
1
\(\dfrac{3}{5}=\dfrac{21}{35}\)
\(\dfrac{-7}{9}=\dfrac{-42}{54}\)
\(\dfrac{32}{48}=\dfrac{4}{6}\)
\(\dfrac{-36}{60}=\dfrac{-6}{10}\)
2
Ta có:\(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
với \(x=-10;y=2\) ,ta có:
\(\left(-10\right)^3-2^3=-1000-8=-1008\)
với \(x=-1;y=0\)
\(\left(-1\right)^3-0^3=-1-0=-1\)
với \(x=2;y=-1\) ,ta có:
\(2^3-\left(-1\right)^3=8-\left(-1\right)=8+1=9\)
với \(x=-0,5;y=1,25\), ta có:
\(\left(-0,5\right)^3-1,25^3=0-2=-2\)
Ta có bảng sau;
Giá trị của x và y |
Giá trị của biểu thức \(\left(x-y\right)\left(x^2+xy+y^2\right)\) |
\(x=-10;y=2\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-1008\) |
\(x=-1;y=0\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-1\) |
\(x=2;y=-1\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=9\) |
\(x=-0,5;y=1,25\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-2\) |
Trước hết, ta làm tính nhân để rút gọn biểu thức, ta được:
(x - y)(x2 + xy + y2) = x . x2 + x . xy + x . y2 + (-y) . x2 + (-y) . xy + (-y) . y2
= x3 + x2y + xy2 – yx2 – xy2 – y3 = x3 – y3
Sau đó tính giá trị của biểu thức x3 – y3
Ta có:
Khi x = -10; y = 2 thì A = (-10)3 – 23 = -1000 – 8 = 1008
Khi x = -1; y = 0 thì A = (-1)3 – 03 = -1
Khi x = 2; y = -1 thì A = 23 – (-1)3 = 8 + 1 = 9
Khi x = -0,5; y = 1,15 thì
A = (-0,5)3 – 1,253 = -0,125 – 1.953125 = -2,078125
Câu 1:
$|x|=1$ | \(x=\pm1\) |
$|2x-1|=2$ | \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\) |
Câu 2:
Để phương trình là phương trình bậc nhất thì \(m-1\ne0\Leftrightarrow m\ne1\)
b) Với \(m=1\), phương trình tương đương \(0x=0\) suy ra phương trình vô số nghiệm
Với \(m\ne1\)
\((m-1)x + m ^2 - 1 = 0 \Leftrightarrow (m-1)x=1-m^2 \)
\(\Leftrightarrow x=\frac{1-m^2}{m-1}=\frac{-\left(m-1\right)\left(1+m\right)}{m-1}=-1-m\)
A ->b
B->d
C->a
D->c