Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)với \(a,b,c,d\in R\)
Theo đề , ta thay lần lượt P(1) , P(2) , P(3) , P(4) được hệ sau : (Mình không viết dấu ngoặc nhọn được nên mình trình bày theo hàng)
\(1+a+b+c+d=1\)
\(16+8a+4b+2c+d=4\)
\(81+27a+9b+3c+d=9\)
\(256+64a+16b+4c+d=16\)
Giải hệ trên được a = -10 , b = 36 , c = -50 , d = 24
Vậy \(P\left(x\right)=x^4-10x^3+36x^2-50x+24\)
Suy ra P(5) = 49
Cảm ơn bạn Hoàng Lê Bảo Ngọc. Có ai có cách giải không dùng hệ phương trình không ạ?
Ta có :
\(x^3-3x^2-3x+1=0\)
\(\Leftrightarrow x^3+x^2-4x^2-4x+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-4x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-2\right)^2-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\pm\sqrt{3}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-1;2+\sqrt{3};2-\sqrt{3}\right\}\)
Bài 1. Ba số tự nhiên liên tiếp là \(a,a+1,a+2,\) với \(a\ge0\). Tích của 2 trong 3 số ấy là các số \(a\left(a+1\right),\left(a+1\right)\left(a+2\right),a\left(a+2\right).\) Theo giả thiết \(a\left(a+1\right)+\left(a+1\right)\left(a+2\right)+a\left(a+2\right)=242\to\left(a+1\right)\left(2a+2\right)+a^2+2a+1=243\)
suy ra \(\to2\left(a+1\right)^2+\left(a+1\right)^2=243\to3\left(a+1\right)^2=243\to\left(a+1\right)^2=81\to a+1=9\to a=8.\)
Bài 2.
a) CHẮC BẠN GÕ NHẦM ĐỀ BÀI. Đề chính xác là
\(\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\)
Đáp số là \(2^{2^5}+1=2^{32}+1\). Sở dĩ tôi chắc chắn như vậy, vì đây là phân tích nhân tử của số Fermat thứ 5.
b) Như trên ta biết rằng \(2^{32}+1=\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\) nên không phải là số nguyên tố.
10 = 10 chứ sao bn.
10=10 cũng đúng nhưng ở đây là đố theo QUY LUẬT chứ k phải tính theo bình thường