\(A=\frac{2x+3}{x-2}\)

Tìm giá trị lớn nhất và nhỏ nhất của A

n...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

A = 2x + 3/x - 2

A = 2x - 4 + 7/x - 2

A = 2.(x - 2) + 7/x - 2

A = 2.(x - 2)/x - 2 + 7/x - 2

A = 2 + 7/x - 2

Để A lớn nhất thì 7/x - 2 lớn nhất

=> x - 2 nhỏ nhất

=> x nhỏ nhất

+ Với x < 2 thì x - 2 âm, khi đó 7/x - 2 âm, không đạt giá trị lớn nhất

+ Với x > 2, do x nhỏ nhất => x = 3, thỏa mãn

Vậy với x = 3 thì A lớn nhất, khi đó A = 2.3 + 3/3 - 2 = 9

Để A nhỏ nhất thì 7/x - 2 nhỏ nhất

=> x - 2 lớn nhất => x lớn nhất

+ Với x > 2, do x lớn nhất nên x - 2 dương, khi đó 7/x - 2 dương, không đạt giá trị nhỏ nhất

+ Với x < 2, do x lớn nhất => x = 1, thỏa mãn

Vậy với x = 1 thì A nhỏ nhất, khi đó A = 1.2 + 3/1 - 2 = -5

27 tháng 8 2016

tuyet hay,tui chi dc tisk 1 cai,nếu k tui tisk cho bn 10001000 cai rùi

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

22 tháng 3 2016

Giúp mk đi

DD
20 tháng 6 2021

a) \(A=\frac{2x-3}{4}\)có giá trị nhỏ nhất khi \(2x-3\)có giá trị nhỏ nhất. 

Suy ra \(x=0\).

b) \(B=\frac{5}{3x-7}\)có giá trị lớn nhất suy ra \(3x-7\)có giá trị dương nhỏ nhất. 

Suy ra \(3x-7>0\Leftrightarrow x>\frac{7}{3}\)do đó giá trị tự nhiên nhỏ nhất của \(x\)là \(x=3\).

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
27 tháng 5 2018

Ta có :  

\(-\left(2x-6\right)^4\le0\forall x\)

\(\Rightarrow-\left(2x-6\right)^4+9\le9\forall x\)

Dấu \("="\)<=>     \(-\left(2x-6\right)^4=0\Leftrightarrow\left(2x-6\right)^4=0\Leftrightarrow2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=3\)

Vậy   GTLN của \(A\)là 9 \(\Leftrightarrow x=3\)

Bài 2 : 

Điều kiện : n khác -2 ; n thuộc Z 

Để G nhỏ nhất 

<=>   3 + 10/n + 2 nhỏ nhất 

<=>    10/n+2 nhỏ nhất 

<=>     n + 2 < 0 ;  n + 2 thuộc Ư ( 10 ) ; n + 2  lớn nhất 

<=>     n + 2 = -1

<=>     n = -1 - 2 

<=>     n = -3

Vậy G đạt GTNN <=> n = -3

27 tháng 5 2018

\(A=-\left(2x-6\right)^4+9\)

Cho mk sử lại đề

26 tháng 5 2018

\(a)\) Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

26 tháng 5 2018

\(b)\) Ta có : 

\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x ) 

\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)

\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{-1}{3}\)

Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)

Chúc bạn học tốt ~ 

18 tháng 5 2018

Để A là số nguyên 

<=> 4n + 1 chia hết cho 2n + 3 

<=> 4n + 6 - 5 chia hết cho 2n + 3

<=> 2(2n + 3) - 5 chia hết cho 2n + 3 

<=> 5 chia hết cho 2n + 3

<=> 2n + 3 thuộc Ư(5) = {-1 ; 1 ; -5 ; 5}

<=> n thuộc {-2 ; -1 ; -4 ; 1}