Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D E F M N
Vì \(MN//EF\) nên theo định lý Thales, ta có: \(\frac{MD}{ME}=\frac{ND}{NF}\Leftrightarrow\frac{2}{2}=\frac{3,5}{NF}\)
\(\Rightarrow NF=3,5\left(cm\right)\)
KL: ................
D E F I K O
a) Xét \(\Delta vuôngKEDva\Delta vuôngDEF\) có:
\(\widehat{E:}chung\)
\(\Rightarrow\Delta KED\) đồng dạng \(\Delta DEF\)
b) Vì \(\Delta KED\) đồng dạng \(\Delta DEF\) (1)
\(\Rightarrow\frac{KE}{DE}=\frac{DE}{EF}\Rightarrow DE.DE=KE.EF\Rightarrow DE^2=KE.EF\)
b2) Xét \(\Delta VuôngKFD\) và \(\Delta vuôngDEF\)có :
\(\widehat{F:}chung\)
\(\Rightarrow\Delta KFD\) đồng dạng \(\Delta DEF\) (2)
từ (1) và (2) suy ra \(\Delta KED\) đồng dạng \(\Delta KFD\)
\(\Rightarrow\frac{EK}{DK}=\frac{DK}{KF}\Rightarrow DK.DK=KE.KF\Rightarrow DK^2=KE.KF\)
b3) xin lỗi mình chưa bt cách làm
c) \(\Delta DEF\) là tam giác vuông nên:
\(EF^2=DE^2.DF^2\)
\(EF=\sqrt{DE^2.DF^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Vì EI là đường phân giác của\(\Delta DEF\)
\(\Rightarrow\) \(\frac{DI}{DE}=\frac{IF}{EF}\Rightarrow DI=\frac{DE.IF}{EF}=\frac{3.4}{5}=2,4\left(cm\right)\)
DF=ID+IF\(\Rightarrow IF=DF-DI=4-2,4=1,6\left(cm\right)\)
Vì \(\Delta KED\) đồng dạng \(\Delta DEF\) nên:
\(\frac{DK}{DF}=\frac{DE}{EF}\Rightarrow DK=\frac{DF.DE}{EF}=\frac{4.3}{5}=2,4\left(cm\right)\)
d) Ta có \(DE^2=KE.EF\)
suy ra \(\frac{DE}{KE}=\frac{EF}{DE}\) (4)
Mà \(\frac{DE}{KE}=\frac{OK}{OD}\)( EO là đường phân giác của \(\Delta KED\)) (5)
Lại có \(\frac{EF}{DE}=\frac{IF}{DI}Hay\frac{DE}{EF}=\frac{DI}{IF}\)( EI là đường phân giác của \(\Delta DEF\)) (6)
Từ (4),(5),(6) suy ra \(\frac{DI}{IF}=\frac{OK}{OD}\)