![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)
\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)
Đặt \(\sqrt{x}=a\left(a>=0\right)\)
Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)
\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)
\(=12+16\left(12+5\sqrt{3}\right)\)
\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)
\(\Leftrightarrow x=a^2\simeq5,66\)
c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)
\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)
\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)
d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)
\(\Leftrightarrow3x-4001=0\)
hay x=4001/3
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
a, \(\left(3\sqrt{x}-y\right)\left(3\sqrt{x}+y\right)=\left(3\sqrt{x}\right)^2-y^2=9x-y^2\)
b, \(\left(\sqrt{x}-2\sqrt{y}\right)\left(2\sqrt{y}+\sqrt{x}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+2\sqrt{y}\right)=\left(\sqrt{x}\right)^2-\left(2\sqrt{y}\right)^2\)
\(=x-4y\)
![](https://rs.olm.vn/images/avt/0.png?1311)
DK: \(x,y>0\)
Ap dung BDT AM-GM ta co:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\sqrt{x}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}+2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=2+2=4\)
Lai co: \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\sqrt{x}+\sqrt{y}=4\)
=> dau "=" cua BDT phai xay ra
Khi do: \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\sqrt{x}\\\frac{1}{\sqrt{y}}=\sqrt{y}\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=1\end{cases}}\) (t/m)
Vay....
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(A=\sqrt{\left(2+\sqrt{3}\right)\left(\sqrt{2+\sqrt{3}}+2\right)\left(-\sqrt{2+\sqrt{3}}+2\right)}\)
\(A=\sqrt{1}\)
\(A=1\)
b)\(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)
\(B=\frac{\sqrt{xy}}{\sqrt{xy}-y}x\sqrt{y}+\frac{\sqrt{x}}{\sqrt{xy}-y}y\sqrt{x}+\left(-\frac{\sqrt{y}}{\sqrt{xy}-x}\right)^2x\sqrt{y}+y\sqrt{x}\)
\(B=x\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{y}+y\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{x}+x\frac{\sqrt{x}}{\sqrt{xy}-x}\sqrt{y}-y\sqrt{x}\frac{\sqrt{y}}{\sqrt{xy}-y}\)
\(B=\frac{-x^{\frac{5}{2}}\sqrt{y}+\sqrt{x}.y^{\frac{5}{2}}}{\left(\sqrt{xy}-y\right)\left(\sqrt{xy}-x\right)}\)
\(B=\frac{\left(\sqrt{x}.y^{\frac{5}{2}}-x^{\frac{5}{2}}\sqrt{y}\right)\left(y+\sqrt{xy}\right)\left(x+\sqrt{xy}\right)}{\left(-y^2+xy\right)\left(-x^2+xy\right)}\)
c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)
\(C=14-6\sqrt{5}+\sqrt{6}-2\sqrt{5}\)
\(C=14-8\sqrt{5}+\sqrt{6}\)
\(C=\sqrt{14-8\sqrt{5}+\sqrt{6}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(x^3=6+3x.\sqrt[3]{9-8}\Leftrightarrow x^3-3x=6\)
\(y^3=34+3y\sqrt[3]{17^2-12^2.2}\Leftrightarrow y^3-3y=34\)
=>B = 6 + 34 + 2017 =2057
Ta có:
x3=6+3x.3√9−8⇔x3−3x=6
y3=34+3y3√172−122.2⇔y3−3y=34
Nên ta suy ra được => B = 6 + 34 + 2017 =2057
Chúc bạn học tốt :)))
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ pt đã cho dễ dàng suy ra x,y>0
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}\cdot\sqrt{x}}=2\)
\(\frac{1}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{y}}\cdot\sqrt{y}}=2\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}\ge4=VP\)
Khi \(x=y=1\)
Đề bài là gì?
Tìm x; y nguyên hay tìm x; y là số thực hay tìm x; y là số nguyên dương
Nếu tìm x; y là số thực thì có vô số nghiệm
Nếu tìm x; y là số nguyên dương thì không có nghiệm nào
Nếu tìm x; y là số nguyên thì sẽ có nghiệm
Vì đề bài không yêu cầu nên mình sẽ tìm x; y là số nguyên.
Ta có: \(\sqrt{x}=\sqrt{2001}-\sqrt{y}\)
=> \(x=2001+y-2\sqrt{2001y}\)
vì x; y ; nguyên dương
=> \(\sqrt{2001y}\) là số nguyên
=> 2001. y là số chính phương với \(0\le y\le2001\)
Mà số 2001.y = 3.23.29.y là số chính phương
=> có hai trường hợp xảy ra
TH1: y = 0 => x = 2001
TH2: y = 3.23.29 = 2001
=> x = 0
Kết luận:.
cảm ơn bạn nhiều nha