Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{4xy}{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
b: \(=\sqrt{x}+\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)
\(=\sqrt{x}-\sqrt{y}-\sqrt{x}+\sqrt{y}=0\)
c: \(=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
\(a.\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)}=\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}=2\sqrt{x}\)
\(b.\sqrt{\left(\sqrt{5}-1\right)\sqrt{13-\sqrt{49-2.7.2\sqrt{5}+20}}}=\sqrt{\left(\sqrt{5}-1\right)\sqrt{5+2\sqrt{5}+1}}=\sqrt{\left(\sqrt{5}-1\right)\left(\sqrt{5+1}\right)}=\sqrt{5}-1\)
\(c.\dfrac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}=\dfrac{\sqrt{2}.\sqrt{5+2\sqrt{5}+1}\left(\sqrt{3}+1\right)\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}}=\dfrac{\sqrt{2}\left(\sqrt{5}+1\right)^2\left(\sqrt{3}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}=\dfrac{2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{\sqrt{3+2\sqrt{3}+1}}=2\left(9-5\right)=2.4=8\)
Câu a
\(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\sqrt{x}+\sqrt{y}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x^2y}+\sqrt{xy^2}}{\sqrt{xy}}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}+x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\\ =\dfrac{2x\sqrt{y}}{\sqrt{xy}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
\(\dfrac{5\left(4+\sqrt{11}\right)}{\left(4+\sqrt{11}\right)\left(4-\sqrt{11}\right)}+\dfrac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}-\dfrac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\dfrac{\sqrt{7}-5}{2}\)\(=\dfrac{\left(4+\sqrt{11}\right)5}{16-11}+\dfrac{3-\sqrt{7}}{9-7}-\dfrac{6\left(\sqrt{7}+2\right)}{7-4}-\dfrac{\sqrt{7}-5}{2}\)
\(=4+\sqrt{11}-\dfrac{3-\sqrt{7}}{2}-2\left(\sqrt{7}+2\right)-\dfrac{\sqrt{7}-5}{2}=\dfrac{8+2\sqrt{11}-3+\sqrt{7}-4\sqrt{7}-8-\sqrt{7}+5}{2}=\dfrac{2\sqrt{11}-4\sqrt{7}+2}{2}=1+\sqrt{11}-2\sqrt{7}\)
1.
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\sqrt{\dfrac{\left(\sqrt{2x-3}+1\right)^2}{\left(\sqrt{2x+3}-1\right)^2}}\end{matrix}\right.\)\(\Leftrightarrow\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{2x-3}+1}{\sqrt{2x+3}-1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\left(\sqrt{2x-3}+1\right)\left(\sqrt{2x+3}+1\right)}{2\left(x+1\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{4x^2-9}+\sqrt{2x-3}+\sqrt{2x+3}+1}{2\left(x+1\right)}\end{matrix}\right.\)
hết tối giải rồi
a: \(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}\)
\(=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{\sqrt{7}}{2}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
b: \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}\)
\(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)
\(=\dfrac{2\left(x+2\sqrt{xy}+y\right)}{2\left(x-y\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(A=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=x-\sqrt{xy}+y\)
\(B=\dfrac{\sqrt{x}-\sqrt{y}}{x\sqrt{x}-y\sqrt{y}}=\dfrac{1}{x+\sqrt{xy}+y}\)
\(C=\dfrac{3\sqrt{3}+x\sqrt{x}}{3-\sqrt{3x}+x}=\sqrt{x}+\sqrt{3}\)
\(D=\dfrac{x+\sqrt{5x}+5}{x\sqrt{x}-5\sqrt{5}}=\dfrac{1}{\sqrt{x}-\sqrt{5}}\)
`[\sqrt{27}-\sqrt{15}]/[3-\sqrt{5}]+4/[2+\sqrt{3}]-6/\sqrt{3}`
`=[\sqrt{3}(3-\sqrt{5})]/[3-\sqrt{5}]+[4(2-\sqrt{3})]/[4-3]-[2\sqrt{3}.\sqrt{3}]/\sqrt{3}`
`=\sqrt{3}+8-4\sqrt{3}-2\sqrt{3}`
`=8-5\sqrt{3}`
_______________________________________
`[x-y]/[\sqrt{x}+\sqrt{y}]-[x\sqrt{y}+y\sqrt{x}]/\sqrt{xy}` `ĐK: x,y > 0`
`=[(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})]/[\sqrt{x}+\sqrt{y}]-[\sqrt{xy}(\sqrt{x}+\sqrt{y})]/\sqrt{xy}`
`=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}`
`=-2\sqrt{y}`
Giải phương trình bạn ạ . Làm giúp mk vs