Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(4x^3-x^2+2x-32+\left(x^3-4\right)\left(\sqrt{x^3-7}-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16\right)+\dfrac{\left(x^3-4\right)\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16+\dfrac{\left(x^3-4\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}\right)=0\)
\(\Leftrightarrow x=2\) (ngoặc đằng sau luôn dương do \(x^3-4=x^3-7+3>0\))
2.
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=x^3+3x^2+3x+1+x+1\)
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=\left(x+1\right)^3+x+1\)
Đặt \(\left\{{}\begin{matrix}2x^3=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3-b^3+a-b=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow2x^3=x+1\Leftrightarrow\left(x-1\right)\left(2x^2+2x+1\right)=0\)
ĐKXĐ \(x\ge1\)
\(3x^2+8x+7=5\sqrt{\left(x-1\right)\left(x^2+2x+3\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+2x+3}=b\left(a,b\ge0\right)\)
=> \(3b^2+2a^2=3x^2+8x+7\)
Khi đó PT
<=> \(3b^2+2a^2=5ab\)
<=> \(\left(a-b\right)\left(2a-3b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)
+ a=b
<=> \(\sqrt{x-1}=\sqrt{x^2+2x+3}\)
<=> \(x^2+x+4=0\)vô nghiệm
+ 2a=3b
\(2\sqrt{x-1}=3\sqrt{x^2+2x+3}\)
<=> \(9x^2+14x+31=0\)vô nghiệm
Vậy PT vô nghiệm
Cách khác \(3x^2+8x+7=5\sqrt{\left(x-1\right)\left(x^2+2x+3\right)}\le\frac{5}{2}\left(x^2+3x+2\right)\)bất đẳng thức cosi
=> \(x^2+x+4\le0\)vô lý vì \(x^2+x+4=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\)
=> pt vô nghiệm
Vậy PT vô nghiệm
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
(1)Phương trình đã cho tương đương với:
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là . Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:
Phương trình đã cho tương đương với:
=0
=0
vì với
thì:
a) ĐK: \(x^2+7x+7\ge0\)
Đặt \(a=\sqrt{x^2+7x+7}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
b) ĐK: \(x^2-6x+6\ge0\)
Đặt \(a=\sqrt{x^2-6x+6}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)
=> Dấu = ko xảy ra hay pt vô nghiệm
C2: Đk:\(x>0\)
Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)
Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\)
\(\Delta =-15<0 \) => Pt vô nghiệm
Vậy...
d) Đk: \(x\le-8;x\ge0\)
Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)
Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)
Vậy...
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)
\(\hept{\begin{cases}x+1=b\\x^2+2x+3=a\end{cases}}\)
......
\(\Rightarrow\sqrt{ab}=3a+2b\)