Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{3x-2}=a\) và \(\sqrt{x-1}=b\)=> \(\sqrt{3x^2-5x+2}=ab\)
và \(4x=a^2+b^2+3\)
khi đó pt trên trở thành \(a+b=a^2+b^2+3+9+2ab\)
đặt a+b=t thì pt trên trở thành \(t=12+t^2\)
<=> \(t^2-t+12=0\)
đến đây vô nghiệm rùi nên cả pt vô nghiệm
nk bạn mk nghĩ cái căn đầu tiên phải là \(\sqrt{3x-2}\) chứ
ĐKXĐ : \(x\ge1\)
PT đã cho tương đương với :
\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)
\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)
Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)
Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)
\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)
từ đó dễ dàng tìm được x
Làm tiếp bài của @Thanh Tùng DZ
Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)
Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)
\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)
\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
đặt \(\sqrt{x-\sqrt{x^2-1}}=a\) và \(\sqrt{x+\sqrt{x^2-1}}=b\)
ta có hệ pt \(\hept{\begin{cases}ab=1\\\sqrt{a}+b=2\end{cases}}\)
đến đây cậu giải nốt nha
Bài 1:
ĐKXĐ: \(x\ge2\)
PT \(\Leftrightarrow x^2-6x+9+3\left(x-3\right)+\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+3\left(x-3\right)+\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left[x+\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x-2}+1}\right]=0\)
Cái ngoặc to hiển nhiên > 0 với mọi \(x\ge2\) nên vô nghiệm.
Vậy x = 3
Bài 2:
HPT \(\Leftrightarrow\hept{\begin{cases}x^2+xy+y^2=19\left(x-y\right)^2\\\frac{19}{7}x^2-\frac{19}{7}xy+\frac{19}{7}y^2=19\left(x-y\right)^2\end{cases}}\)
Lấy pt dưới trừ pt trên:
\(\frac{12}{7}x^2-\frac{26}{7}xy+\frac{12}{7}y^2=0\Leftrightarrow\frac{2}{7}\left(2x-3y\right)\left(3x-2y\right)=0\)
Làm nốt ạ!
bạn ơi cho mk hỏi dòng thứ 3 từ trên xuống của bài 1 là sao vậy ????
Đặt a=x2+x+2>0, phương trình trên trở thành:
\(\sqrt{a+5}+\sqrt{a}=\sqrt{3a+13}\)
\(\Rightarrow2a+5+2\sqrt{a^2+5a}=3a+13\)
\(\Leftrightarrow2\sqrt{a^2+5a}=a+8\)
\(\Leftrightarrow4a^2+20a=a^2+16a+64\)
\(\Leftrightarrow3a^2+4a-64=0\)
\(\Delta=784>0\Rightarrow\sqrt{\Delta}=28\)
=>PT có 2 nghiệm phân biệt: \(a_1=4\)(nhận);\(a_2=-\frac{16}{3}\)(loại)
Do đó : \(x^2+x+2=4\Leftrightarrow x^2+x-2=0\)
Ta có : a+b+c=1+1-2=0
=>phương trình có 2 nghiệm pb: \(x_1=1;x_2=-2\)
Vậy tập nghiệm của PT là: S={1;-2}
mình ko bjt, mình mới hok lớp 7