Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định: \(0\le x\le1\)
Nhận ra rằng phương trình có nghiệm \(x=\frac{1}{2}\)khi x = 1-x nên ta sẽ dùng phương pháp đánh giá.
Với mọi a, b ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\).
Suy ra: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2< 2\left(\left(\sqrt{x}\right)^2+\left(\sqrt{1-x}\right)^2\right)=2\)
Vậy \(\sqrt{x}+\sqrt{1-x}\le\sqrt{2}\left(1\right)\)
Với mọi a, b ta luôn có: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
Thật vậy: \(\left(a+b\right)^4=\left(a+b\right)^2\left(a+b\right)^2\le2\left(a^2+b^2\right).2\left(a^2+b^2\right)=4\left(a^2+b^2\right)^2\)
\(4\left(a^2+b^2\right)^2< 4.2.\left(a^4+b^4\right)=8\left(a^4+b^4\right)\)suy ra: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
áp dụng BĐT trên cho \(\sqrt[4]{x}+\sqrt[4]{1-x}\)ta có:
\(\left(\sqrt[4]{x}+\sqrt[4]{1-x}\right)^4\le8\left(\left(\sqrt[4]{x}\right)^4+\left(\sqrt[4]{1-x}\right)^4\right)=8\)
Suy ra:\(\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt[4]{8}\left(2\right)\)
từ (1), (2) suy ra: \(\sqrt{x}+\sqrt{1-x}+\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt{2}+\sqrt[4]{8}\)
Dấu "=" xảy ra: \(x=1-x\Leftrightarrow x=\frac{1}{2}\)(thoản mãn).
'
\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)
\(\Rightarrow2-x^2+2-\frac{1}{x^2}+2\sqrt{\left(2-x^2\right)\left(2-\frac{1}{x^2}\right)}=16-8\left(x+\frac{1}{x}\right)+\left(x+\frac{1}{x}\right)^2\)
\(\Rightarrow4-\left(x^2+\frac{1}{x^2}\right)+2\sqrt{5-2\left(x^2+\frac{1}{x^2}\right)}=16-8\left(x+\frac{1}{x}\right)+\left(x+\frac{1}{x}\right)^2\)
\(\Rightarrow x^2+\frac{1}{x^2}+2\sqrt{5-2\left(x^2+\frac{1}{x^2}\right)}=8\left(x+\frac{1}{x}\right)-\left(x+\frac{1}{x}\right)^2-12\)
Đặt \(a=x+\frac{1}{x}\Rightarrow\left|a\right|=\left|x+\frac{1}{x}\right|=\left|x\right|+\frac{1}{\left|x\right|}\ge2\Rightarrow\left|a\right|\ge2\)
Phươn trình trở thành:
\(a^2-2+2\sqrt{5-2\left(a^2-2\right)}=8a-a^2-12\)
Tớ nghĩ là theo cách này có vẻ khả quan
x=1
Mik tính bằng máy tính đó. Mik mới học lớp 8 thôi, chưa giải được. ^^
ĐK: \(4x^2+5x+1\ge0\Leftrightarrow\left(4x+1\right)\left(x+1\right)\ge0\)
<=>\(\orbr{\begin{cases}x\le-1\\x\ge\frac{-1}{4}\end{cases}}\)
PT trên tương đương: \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)
Đặt \(a=\sqrt{4x^2+5x+1}\ge0;b=\sqrt{4x^2-4x+4}>0\) ta có hệ PT:
\(\hept{\begin{cases}a-b=9x-3\\a^2-b^2=9x-3\end{cases}}\Leftrightarrow a-b=a^2-b^2\)
<=>a-b=(a-b)(a+b)
<=>(a-b)(1-a-b)=0
<=>a=b hoặc 1-a-b=0
*Khi a=b thì: \(\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\Leftrightarrow9x-3=0\)
<=>x=1/3(nhận)
*Khi 1-a-b=0 =>a+b=1
=>\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)(vô lí vì: \(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\ge\sqrt{3}>1\))
Vậy tập nghiệm của PT là: S={1/3}
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
Đặt a=x2+x+2>0, phương trình trên trở thành:
\(\sqrt{a+5}+\sqrt{a}=\sqrt{3a+13}\)
\(\Rightarrow2a+5+2\sqrt{a^2+5a}=3a+13\)
\(\Leftrightarrow2\sqrt{a^2+5a}=a+8\)
\(\Leftrightarrow4a^2+20a=a^2+16a+64\)
\(\Leftrightarrow3a^2+4a-64=0\)
\(\Delta=784>0\Rightarrow\sqrt{\Delta}=28\)
=>PT có 2 nghiệm phân biệt: \(a_1=4\)(nhận);\(a_2=-\frac{16}{3}\)(loại)
Do đó : \(x^2+x+2=4\Leftrightarrow x^2+x-2=0\)
Ta có : a+b+c=1+1-2=0
=>phương trình có 2 nghiệm pb: \(x_1=1;x_2=-2\)
Vậy tập nghiệm của PT là: S={1;-2}
đặt \(\sqrt{3x-2}=a\) và \(\sqrt{x-1}=b\)=> \(\sqrt{3x^2-5x+2}=ab\)
và \(4x=a^2+b^2+3\)
khi đó pt trên trở thành \(a+b=a^2+b^2+3+9+2ab\)
đặt a+b=t thì pt trên trở thành \(t=12+t^2\)
<=> \(t^2-t+12=0\)
đến đây vô nghiệm rùi nên cả pt vô nghiệm
nk bạn mk nghĩ cái căn đầu tiên phải là \(\sqrt{3x-2}\) chứ
đặt \(\sqrt{x-\sqrt{x^2-1}}=a\) và \(\sqrt{x+\sqrt{x^2-1}}=b\)
ta có hệ pt \(\hept{\begin{cases}ab=1\\\sqrt{a}+b=2\end{cases}}\)
đến đây cậu giải nốt nha
to khong biet