\(\sqrt{x+2}=x^2-2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

\(\sqrt{x+2}=x^2-2\)

\(\Leftrightarrow\left(\sqrt{x+2}\right)^2=\left(x^2-2\right)^2\)

\(\Leftrightarrow x+2=x^4-4x^2+4\)

\(\Leftrightarrow x^4-4x^2-x+2=0\)

\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-x+2=0\)

\(\Leftrightarrow x^3.\left(x-2\right)+2x^2.\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x^3+2x^2-1\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x^3+x^2+x^2-1\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left[x^2.\left(x+1\right)+\left(x+1\right).\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+1\right).\left(x^2+x-1\right)=0\)

\(x-2=0\Rightarrow x=2\)

\(x+1=0\Rightarrow x=-1\)

\(x^2+x-1=0\Rightarrow x^2+x+\frac{1}{4}-\frac{5}{4}=0\Rightarrow\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\Rightarrow x=\pm\sqrt{\frac{5}{4}}-\frac{1}{2}\)

Vậy ...

25 tháng 1 2019

\(\sqrt{x+2}=x^2-2\)

\(x+2=x^4-4x^2+4\)

\(\Rightarrow x^4-4x^2+4-x-2=0\)

\(\Rightarrow x^4-2x^3+2x^3-4x^2-x+2=0\)

\(\Rightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^3+2x^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x^3+2x^2-1=0\Rightarrow x^2\left(x+2\right)=1\left(kotm\right)\end{cases}}\)

Vậy x = 2

NV
12 tháng 7 2020

d/

Bình phương 2 vế pt đã cho:

\(x^2-\frac{1}{4x}=x^2+x-\frac{1}{4x}-2x\sqrt{x-\frac{1}{4x}}\)

\(\Leftrightarrow x=2x\sqrt{x-\frac{1}{4x}}\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\2\sqrt{x-\frac{1}{4x}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x-\frac{1}{4x}\right)=1\)

\(\Leftrightarrow4x^2-x-1=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{17}}{8}\\x=\frac{1-\sqrt{17}}{8}\end{matrix}\right.\)

Do quá trình biến đổi là không tương đương và ban đầu chưa tìm điều kiện xác định nên cần thế 2 nghiệm vào pt ban đầu để thử.

Ta thấy chỉ có nghiệm \(x=\frac{1+\sqrt{17}}{8}\) thỏa mãn

Vậy pt có nghiệm duy nhất \(x=\frac{1+\sqrt{17}}{8}\)

NV
12 tháng 7 2020

c/ Chắc đề là \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)

ĐKXĐ: \(0\le x\le1\)

\(\Leftrightarrow2\sqrt{x+x^2}+2\sqrt{x-x^2}=2x+2\)

\(\Leftrightarrow\left(x+x^2-2\sqrt{x+x^2}+1\right)+\left(x-x^2-2\sqrt{x+x^2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+x^2}-1\right)^2+\left(\sqrt{x-x^2}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+x^2}-1=0\\\sqrt{x-x^2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-1=0\\x^2-x+1=0\end{matrix}\right.\)

Phương trình đã cho vô nghiệm

NV
10 tháng 8 2020

6.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)

NV
10 tháng 8 2020

4.

ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)

\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)

\(\Leftrightarrow3t^2-7t+34=0\)

Phương trình vô nghiệm

5.

ĐKXĐ: ...

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:

\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)

\(\Leftrightarrow2x=4\Rightarrow x=2\)

a: \(=\sqrt{5}-1-2\left(\sqrt{2}-1\right)-\left|\sqrt{5}-1-2\left(\sqrt{2}-1\right)\right|\)

\(=\sqrt{5}-1-2\sqrt{2}+2-\left|\sqrt{5}-1-2\sqrt{2}+2\right|\)

\(=-2\sqrt{2}+\sqrt{5}+1-\left(-2\sqrt{2}+\sqrt{5}+1\right)=0\)

b: \(=\left|x-4\right|-\left|x-2\right|\)

\(=\left|3\sqrt{2}-1-4\right|-\left|3\sqrt{2}-1-2\right|\)

\(=\left|3\sqrt{2}-5\right|-\left|3\sqrt{2}-3\right|\)

\(=5-3\sqrt{2}-3\sqrt{2}+3=8-6\sqrt{2}\)

15 tháng 7 2018

bài 2 rút gọn :

a) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)

= \(\left|1-\sqrt{2}\right|+\left|\sqrt{2}-3\right|\)

=\(\sqrt{2}-1+3-\sqrt{2}\)

=2

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{7}-\sqrt{48}\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{3}-1+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{7}-3\sqrt{3}+1\)

c)

15 tháng 7 2018

Help mee <3

19 tháng 9 2019

cái này có phải bình phương hai vế nên ko nhỉ?

19 tháng 9 2019

Câu 6 có sai ko?

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v

12 tháng 7 2019

GIÚP MK NHA CÁC BN